Influence of large-scale coupled hydrogen derived fuel power generation on coal-fired units
WANG Yikun;DENG Lei;CHEN Gang;ZHOU Fei;JIA Zhaopeng;ZHANG Zhida;TANG Yanfeng;Xi′an Thermal Power Research Institute Co.,Ltd.;State Key Laboratory of Multiphase Flow in Power Engineering,Xi′an Jiaotong University;Huaneng Taicang Power Plant Co.,Ltd.;
Abstract:
As a solution for large-scale utilization of hydrogen energy, hydrogen derived fuel has attracted much attention in recent years. Coupling hydrogen derived fuel power generation can greatly reduce carbon emissions of coal-fired units, which is expected to become an important way for coal-fired units to achieve carbon emission reduction in the future. The thermal calculation was performed on a 300 MW coal-fired unit. The influence of coupled hydrogen derived fuel power generation(mass ratios of 0-100%) on various systems and operating parameters of the unit under different working conditions were analyzed under different working conditions in this paper. The results show that the maximum annual emission reduction is about 1.212 million tons of CO_2 after large-scale coupling of hydrogen derived fuel. The variation of unit parameters is related to the characteristics of hydrogen-based derived fuel. When the calorific value of hydrogen derived fuel is high, the exhaust temperature decreases by 2.7-9.2 ℃,the boiler thermal efficiency increases by 0.04-0.91 percent point, and the flue gas mass decreases by 20.1-20.8 percent point. When the calorific value of hydrogen derived fuel is low, the exhaust temperature rises by 2.4-26.2 ℃,the boiler thermal efficiency decreases by 0.18-2.04 percent point, and the maximum increase of flue gas mass is 0.4%. Coupling hydrogen derived fuel has little influence on the original air supply system, denitration and desulfurization system. The induced draft fan needs to be expanded and reconstructed. It is necessary to add the independent combustion system and improve the protection level of field equipment and develop the new capture system to reduce emissions of unconventional pollutants such as secondary organic aerosol, formaldehyde and aldehyde.
Key Words: coal-fired unit;hydrogen derived fuel;NH_3;CH_3OH;CH_3OCH_3;CO_2 emission reduction
Foundation: 中国华能集团有限公司科技资助项目(GA-21-TZK04)
Authors: WANG Yikun;DENG Lei;CHEN Gang;ZHOU Fei;JIA Zhaopeng;ZHANG Zhida;TANG Yanfeng;Xi′an Thermal Power Research Institute Co.,Ltd.;State Key Laboratory of Multiphase Flow in Power Engineering,Xi′an Jiaotong University;Huaneng Taicang Power Plant Co.,Ltd.;
DOI: 10.13226/j.issn.1006-6772.CC21080301
References:
- [1] 全球能源互联网发展合作组织.中国2060年前碳中和研究报告[R/OL].(2021-07-30)[2021-03-19].https://news.bjx.com.cn/html/20210319/1142785.shtml.
- [2] 中国电力企业联合会.中国电力行业年度发展报告2020[R/OL].(2020-07-30)[2021-02-23].https://cec.org.cn/detail/index.html 3-284175.
- [3] KURATA O,IKI N,MATSUNUMA T,et al.Performances and emission characteristics of NH3-air and NH3-CH4-air combustion gas-turbine power generations[J].Proceedings of the Combustion Institute,2017,36(3):3351-3359.
- [4] SERVICE R F.Ammonia made from sun,air,and water could turn Australia into a renewable energy[J].Science,2018,361:120-123.
- [5] VALERA-MEDINA A,MARSH R,RUNYON J,et al.Ammonia-methane combustion in tangential swirl burners for gas turbine power generation[J].Applied Energy,2017,185:1362-1371.
- [6] VALERA-MEDINA A,XIAO H,OWEN-JONES M,et al.Amm-onia for power[J].Progress in Energy and Combustion Science,2018,69:63-102.
- [7] KONNV A A,RUYCK J D.Temperature-dependent rate constant for the reaction ■[J].Combustion and Flame,2001,125:1258-1264.
- [8] OKAFOR,EKENECHUKWU C,NAITO Y,COLSON S,et al.Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames[J].Combustion and Flame,2018,187:185-198.
- [9] SHRESTHA K P,SEIDEL L,ZEUCH T,et al.Detailed kinetic mechanism for the oxidation of ammonia including the formation and reduction of nitrogen oxides[J].Energy & Fuels,2018,32(10):10202-10217.
- [10] HAYAKAWA A,GOTO T,MINOTO R,et al.Laminar burning velocity and markstein length of ammonia/air premixed flames at various pressures[J].Fuel,2015,159:98-106.
- [11] ZAKAZNOV V F,KURSHEVA L A,FEDINA Z I.Determination of normal flame velocity and critical diameter of flame extinction in ammonia-air mixture[J].Combustion Explosion and Shock Waves,1978,14(6):710-713.
- [12] ZHANG M,PATYAL A,WANG J,et al.Darrieus-Landau instability effect on the flame topology and brush thickness for premixed turbulent flames[J].Applied Thermal Engineering,2019,158:113603.
- [13] 边志坚,王金华,赵浩然,等.氨/氢气湍流预混火焰传播特性实验研究[J].燃烧科学与技术,2020,26(6):551-557.BIAN Zhijian,WANG Jinhua,ZHAO Haoran,et al.Experimental study on turbulent premixed flame propagation characteristics of ammonia/hydrogen mixtures[J].Journal of Combustion Science and Technology,2020,26(6):551-557.
- [14] NOZARI H,KARACA G,TUNCER O,et al.Porous medium based burner for efficient and clean combustion of ammonia-hydrogen-air systems[J].International Journal of Hydrogen Energy,2017,42(21):14775-14785.
- [15] HINOKUMA S,KIRITOSHI S,KAWABATA Y,et al.Catalytic ammonia combustion properties and operando characterization of copper oxides supported on aluminum silicates and silicon oxides[J].Journal of Catalysis,2018,361:267-277.
- [16] FILIPE Ramos C,ROCHA R C,OLIVEIRA P M R,et al.Experimental and kinetic modelling investigation on NO,CO and NH3 emissions from NH3/CH4/air premixed flames[J].Fuel,2019,254:115693.
- [17] HAPUTHANTHRI S O,MAXWELL T T,FLEMING J,et al.Ammonia and gasoline fuel blends for spark ignited internal combustion engines[J].Journal of Energy Resources Technology,2015,137(6):062201.
- [18] RYU K,ZACHARAKIS-JUTZ G E,KONG S C.Performancecharacteristics of compression-ignition engine using high concentration of ammonia mixed with dimethyl ether[J].Applied Energy,2014,113:488-499.
- [19] HAYAKAWA A,ARAKAWA Y,MIMOTO R,et al.Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor[J].International Journal of Hydrogen Energy,2017,42(19):14010-14018.
- [20] OKAFOR E C,SOMARATHNE K D K A,HAYAKAWA A,et al.Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine[J].Proceedings of the Combustion Institute,2019,37(4):4597-4606.
- [21] ISHIHARA S,ZHANG J,ITO T.Numerical calculation with detailed chemistry on ammonia co-firing in a coal-fired boiler:Effect of ammonia co-firing ratio on NO emissions[J].Fuel,2020,274:117742.
- [22] ZHANG J,ITO T,ISHII H,et al.Numerical investigation on ammonia co-firing in a pulverized coal combustion facility:Effect of ammonia co-firing ratio[J].Fuel,2020,267:117166.
- [23] 张继帅.二甲醚对甲醇自着火特性的影响[D].西安:长安大学,2019.
- [24] 宣熔,牛梦达,李品芳,等.掺烧甲醇对船舶柴油机性能的影响[J].舰船科学技术,2020,42(21):101-104,109.XUAN Rong,NIU Mengda,LI Pinfang,et al.Research on the effect of blending methanol on marine diesel engine performance[J].Ship Science and Technology,2020,42(21):101-104,109.
- [25] 李朝晖.氢助燃点燃式甲醇发动机燃烧与排放特性研究[D].长春:吉林大学,2020.
- [26] 赵廉,孙平,刘军恒,等.DOC/SCR对聚甲氧基二甲醚/甲醇双燃料发动机NOx排放的影响[J].石油学报(石油加工),2021,37(4):875-883.ZHAO Lian,SUN Ping,LIU Junheng,et al.Effects of DOC/SCR on the NOx emission of polyoxymethylene dimethyl ethers/methanol dual-fuel engine[J].Acta Petrolei Sinica(Petroleum Processing Section),2021,37(4):875-883.
- [27] 韩冬雪.二甲醚、醇类燃料燃烧及污染物排放机理研究[D].大连:大连海事大学,2020.
- [28] 李燕真.不同侧预混对甲醇/二甲醚对冲火焰燃烧特性及NO生成的影响研究[D].重庆:重庆大学,2019.
- [29] 冉景煜,施军,宋爽,等.甲醇混合燃料引射式燃烧器配风性能数值研究[J].应用基础与工程科学学报,2015,23(2):389-399.RAN Jingyu,SHI Jun,SONG Shuang,et al.Numerical study on air distribution performances of ejector burner for methanol-mixed fuel[J].Journal of basic science and engineering,2015,23(2):389-399.
- [30] 张全,白龙.醇基燃料燃烧器结构对火焰结构的影响研究[J].工业加热,2016,45(5):6-18.ZHANG Quan,BAI Long.The research of the effect of methanol fuel burner′s structure on flame structure[J].Industrial Heating,2016,45(5):6-18.
- [31] 王双童,杨希刚,常金旺.国内外煤电机组服役年限现状研究[J].热力发电,2020,49(9):11-16.WANG Shuangtong,YANG Xigang,CHANG Jinwang.Research on status of service life of coal-fired units at home and abroad[J].Thermal Power Generation,2020,49(9):11-16.
- [32] 王一坤,吕凯,周平,等.蒸汽抽取位置对污泥耦合发电燃煤机组影响研究[J].热力发电,2020,49(12):78-83.WANG Yikun,LYU Kai,ZHOU Ping,et al.Effects of steam extraction position on sludge-coal blending combustion generating unit[J].Thermal Power Generation,2020,49(12):78-83.
- [33] 王一坤,邓磊,王涛,等.大比例掺烧NH3对燃煤机组影响分析[J].洁净煤技术,2021,28(3):185-192.WANG Yikun,DENG Lei,WANG Tao,et al.Study on the influence of large scale coupled NH3 power generation on coal-fired units[J].Clean Coal Technology,2021,28(3):185-192.
- [34] 王一坤,邓磊,常根周,等.生物质气参数对燃煤耦合生物质发电机组影响研究[J].热力发电,2021,50(3):34-40.WANG Yikun,DENG Lei,CHANG Genzhou,et al.Influence of biomass gas parameters on coupled coal-fired biomass generation[J].Thermal Power Generation,2021,50(3):34-40.
- [35] 王一坤,邓磊,柳宏刚,等.湿污泥掺烧量对抽烟气干化污泥耦合发电机组影响[J].热力发电,2020,42(11):47-54.WANG Yikun,DENG Lei,LIU Honggang,et al.Effects of wet sludge amount on sludge-coal co-combustion generation unit using extracted flue gas to heat sludge[J].Thermal Power Generation,2020,42(11):47-54.
- WANG Yikun
- DENG Lei
- CHEN Gang
- ZHOU Fei
- JIA Zhaopeng
- ZHANG Zhida
- TANG Yanfeng
- Xi′an Thermal Power Research Institute Co.
- Ltd.
- State Key Laboratory of Multiphase Flow in Power Engineering
- Xi′an Jiaotong University
- Huaneng Taicang Power Plant Co.
- Ltd.
- WANG Yikun
- DENG Lei
- CHEN Gang
- ZHOU Fei
- JIA Zhaopeng
- ZHANG Zhida
- TANG Yanfeng
- Xi′an Thermal Power Research Institute Co.
- Ltd.
- State Key Laboratory of Multiphase Flow in Power Engineering
- Xi′an Jiaotong University
- Huaneng Taicang Power Plant Co.
- Ltd.