Progress in CO2-to-olefins conversion via hydrogenation
HAN Jianxiang;CUI Xiwen;SUN Jian;
Abstract:
Under the dual imperatives of global climate change and energy structure transition,the efficient conversion and utilization of CO_2 has emerged as a pivotal pathway toward achieving the “ dual carbon” goals. Olefins, as essential chemical feedstock, are traditionally produced through fossil resource-intensive processes characterized by high energy consumption and substantial carbon emissions. Consequently,the catalytic hydrogenation of CO_2 to olefins using green hydrogen presents a promising strategy to mitigate greenhouse gas emissions while reducing reliance on petrochemical resources. Against this backdrop, this review systematically summarizes recent advancements in CO_2 hydrogenation to olefins,with a particular focus on catalyst design and reaction mechanisms.The review begins with a comprehensive overview of the primary technical routes for CO_2-to-olefins conversion, including the COmediated pathway and MTO pathway. Subsequently, it elaborates on catalyst design strategies, encompassing the selection of active components(e.g.,Fe-based and Co-based catalysts),the incorporation of promoters(e.g.,alkali metals and transition metals),and the optimization of supports(e.g., metal oxides and carbon-based materials). These strategies significantly enhance catalytic performance by modulating electronic structures, surface acid-base properties, and the exposure of active sites. Regarding reaction mechanisms,the review provides an in-depth analysis of the CO-mediated and methanol-mediated pathways. The CO-mediated route involves sequential steps such as CO_2 adsorption/activation,CO formation/diffusion,and C-C coupling/hydrogenation during FTS. In contrast,the methanol-mediated pathway enables direct CO_2-to-olefins conversion via a two-step process,circumventing the AndersonSchulz-Flory distribution limitation and markedly improving selectivity toward light olefins. Finally,the review oulines future research directions,including the development of more efficient and stable catalytic systems,as well as the design of novel reactors(e.g.,multistage or membrane reactors) to enhance process efficiency. In summary,this work systematically examines catalyst design principles and mechanistic insights in CO_2 hydrogenation to olefins,critically evaluates the merits and limitations of different technical approaches,and proposes key areas for future investigation. With the growing emphasis on green chemistry and sustainable development, CO_2hydrogenation to olefins holds significant potential as a transformative technology for achieving carbon neutrality.
Key Words: CO_2 conversion;olefins;CO-mediated route;bifunctional catalyst;reaction mechanism
Foundation: 国家重点研发计划资助项目(2022YFA1504702)
Authors: HAN Jianxiang;CUI Xiwen;SUN Jian;
DOI: 10.13226/j.issn.1006-6772.GPF25040101
References:
- [1]YE J Y,DIMITRATOS N,ROSSI L M,et al.Hydrogenation of CO2 for sustainable fuel and chemical production[J].Science,2025,387(6737):eadn9388.
- [2]YE R P,DING J,REINA T R,et al.Design of catalysts for selective CO2 hydrogenation[J].Nature Synthesis,2025,4(3):288-302.
- [3]IEA.Global Hydrogen Review 2024.[R/OL].[2024-12-14].https://www.iea.org/reports/global-hydrogen-review-2024.
- [4]DING J Y,DU P J,ZHU J C,et al.Light-driven C-C coupling for targeted synthesis of CH3 COOH with nearly 100%selectivity from CO2[J].Angewandte Chemie (International Ed),2024,63(13):e202400828.
- [5]MA M Z,HUANG Z A,DORONKIN D E,et al.Ultrahigh surface density of Co-N2C single-atom-sites for boosting photocatalytic CO2 reduction to methanol[J].Applied Catalysis B:Environmental,2022,300:120695.
- [6]LIU J Y,LI P S,JIA S Q,et al.Electrocatalytic CO2 hydrogenation to C2+alcohols catalysed by Pr-Cu oxide heterointerfaces[J].Nature Synthesis,2025:1-14.
- [7]ZHENG M,WANG P T,ZHI X,et al.Electrocatalytic CO2-toC2+with ampere-level current on heteroatom-engineered copper via tuning*CO intermediate coverage[J].Journal of the American Chemical Society,2022,144(32):14936-14944.
- [8]李华勇,邢小芳,林世源,等.热催化CO2加氢制烯烃催化剂研究进展[J].低碳化学与化工,2025,50(2):1-14.LI Huayong,XING Xiaofang,LIN Shiyuan,et al.Research progress on catalysts for thermal catalytic CO2 hydrogenation to olefins[J].Low-carbon Chemistry and Chemical Engineering,2025,50(2):1-14.
- [9]黄杰,艾培培,郭立升,等.铁基催化剂用于CO2加氢制备高碳烯烃的研究进展[J].洁净煤技术,2025,31(1):173-191.HUANG Jie,AI Peipei,GUO Lisheng,et al.Recent progress about the development of iron-based catalysts for CO2 hydrogenation to higher olefins[J].Clean Coal Technology,2025,31(1):173-191.
- [10]辛月,曾杰.CO2加氢制液体产物高效催化剂的设计及催化机理[J].洁净煤技术,2024,30(12):1-21.XIN Yue,ZENG Jie.Design of efficient catalysts and research of catalytic mechanisms for CO2 hydrogenation to liquid products[J].Clean Coal Technology,2024,30(12):1-21.
- [11]LIU K D,XU D,FAN H F,et al.Development of Mg-modified Fe-based catalysts for low-concentration CO2 hydrogenation to olefins[J].ACS Sustainable Chemistry&Engineering,2024,12(5):2070-2079.
- [12]MA Z Q,POROSOFF M D.Development of tandem catalysts for CO2 hydrogenation to olefins[J].ACS Catalysis,2019,9(3):2639-2656.
- [13]CHERNYAK S A,CORDA M,DATH J P,et al.Light olefin synthesis from a diversity of renewable and fossil feedstocks:State-of the-art and outlook[J].Chemical Society Reviews,2022,51(18):7994-8044.
- [14]徐海丰.全球乙烯产业格局变化及发展前景分析[J].国际石油经济,2023,31(1):65-70,82.XU Haifeng.The change and development prospect of global ethylene industry[J].International Petroleum Economics,2023,31(1):65-70,82.
- [15]ZHANG J S,MA R Y,HAM H,et al.Electroassisted propane dehydrogenation at low temperatures:Far beyond the equilibrium limitation[J].JACS Au,2021,1(10):1688-1693.
- [16]KHODAKOV A Y,CHU W,FONGARLAND P.Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J].Chemical Reviews,2007,107(5):1692-1744.
- [17]YANG M,FAN D,WEI Y X,et al.Recent progress in methanolto-olefins (MTO) catalysts[J].Advanced Materials,2019,31(50):e1902181.
- [18]TIAN P,WEI Y X,YE M,et al.Methanol to olefins (MTO):From fundamentals to commercialization[J].ACS Catalysis,2015,5(3):1922-1938.
- [19]张玲,常笑雨.甲醇制烯烃技术研究进展[J].分子催化(中英文),2024,38(4):366-374.ZHANG Ling,CHANG Xiaoyu.Research progress in the methanol to olefin (MTO) technology[J].Journal of Molecular Catalysis (CHINA),2024,38(4):366-374.
- [20]LIU Z Q,CHU Y Y,TANG X M,et al.Diffusion dependence of the dual-cycle mechanism for MTO reaction inside ZSM-12 and ZSM-22 zeolites[J].The Journal of Physical Chemistry C,2017,121(41):22872-22882.
- [21]TORRES GALVIS H M,DE JONG K P.Catalysts for production of lower olefins from synthesis gas:A review[J].ACS Catalysis,2013,3(9):2130-2149.
- [22]LIANG B L,DUAN H M,SUN T,et al.Effect of Na promoter on Fe-based catalyst for CO2 hydrogenation to alkenes[J].ACSSustainable Chemistry&Engineering,2019,7(1):925-932.
- [23]DE SMIT E,WECKHUYSEN B M.The renaissance of iron-based Fischer-Tropsch synthesis:On the multifaceted catalyst deactivation behaviour[J].Chemical Society Reviews,2008,37(12):2758-2781.
- [24]DE SMIT E,CINQUINI F,BEALE A M,et al.Stability and reactivity of?-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis:Controllingμ(C)[J].Journal of the American Chemical Society,2010,132(42):14928-14941.
- [25]WEI J,SUN J,WEN Z Y,et al.New insights into the effect of sodium on Fe3O4-based nanocatalysts for CO2 hydrogenation to light olefins[J].Catalysis Science&Technology,2016,6(13):4786-4793.
- [26]RIEDEL T,SCHULZ H,SCHAUB G,et al.Fischer-Tropsch on iron with H2/CO and H2/CO2 as synthesis gases:The episodes of formation of the Fischer-Tropsch regime and construction of the catalyst[J].Topics in Catalysis,2003,26(1):41-54.
- [27]ZHANG Y L,FU D L,LIU X L,et al.operando spectroscopic study of dynamic structure of iron oxide catalysts during CO2hydrogenation[J].ChemCatChem,2018,10(6):1272-1276.
- [28]ROMMENS K T,SAEYS M.Molecular views on Fischer-Tropsch synthesis[J].Chemical Reviews,2023,123(9):5798-5858.
- [29]ZHOU W,CHENG K,KANG J C,et al.New horizon in C1chemistry:Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J].Chemical Society Reviews,2019,48(12):3193-3228.
- [30]LI T,ZHAO H,GUO L S,et al.Construction of highly active Fe5C2-FeCo interfacial sites for oriented synthesis of light olefins from CO2 hydrogenation[J].ACS Catalysis,2025,15(2):1112-1122.
- [31]XU Y,ZHAI P,DENG Y C,et al.Highly selective olefin production from CO2 hydrogenation on iron catalysts:A subtle synergy between manganese and sodium additives[J].Angewandte Chemie International Edition,2020,59(48):21736-21744.
- [32]YUAN F,ZHANG G H,ZHU J,et al.Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity[J].Catalysis Today,2021,371:142-149.
- [33]LIU Y Y,CHEN B J,LIU R,et al.CO2 hydrogenation to olefins on supported iron catalysts:Effects of support properties on carbon-containing species and product distribution[J].Fuel,2022,324:124649.
- [34]WANG S W,WU T J,LIN J,et al.Iron-potassium on singlewalled carbon nanotubes as efficient catalyst for CO2 hydrogenation to heavy olefins[J].ACS Catalysis,2020,10(11):6389-6401.
- [35]WANG Y,LIN S Y,LI M,et al.Boosting CO2 hydrogenation of Fe-based monolithic catalysts via 3D printing technologyinduced heat/mass-transfer enhancements[J].Applied Catalysis B:Environmental,2024,340:123211.
- [36]HAN J X,HAN Y,YU J F,et al.Low-temperature CO2 hydrogenation to olefins on anorthic NaCoFe alloy carbides[J].Angewandte Chemie (International Ed),2025,64(9):e202420621.
- [37]YUAN F,ZHANG G H,WANG M R,et al.Boosting the production of light olefins from CO2 hydrogenation over Fe-co bimetallic catalysts derived from layered double hydroxide[J].Industrial&Engineering Chemistry Research,2023,62(21):8210-8221.
- [38]XU Q Q,XU X Q,FAN G L,et al.Unveiling the roles of Fe-Co interactions over ternary spinel-type ZnCoxFe2-xO4 catalysts for highly efficient CO2 hydrogenation to produce light olefins[J].Journal of Catalysis,2021,400:355-366.
- [39]LIU N,WEI J,XU J,et al.Elucidating the structural evolution of highly efficient Co-Fe bimetallic catalysts for the hydrogenation of CO2 into olefins[J].Applied Catalysis B:Environmental,2023,328:122476.
- [40]WANG L K,HAN Y,WEI J,et al.Dynamic confinement catalysis in Fe-based CO2 hydrogenation to light olefins[J].Applied Catalysis B:Environmental,2023,328:122506.
- [41]ZHANG Z Q,YIN H R,YU G D,et al.Selective hydrogenation of CO2 and CO into olefins over Sodium-and Zinc-Promoted iron carbide catalysts[J].Journal of Catalysis,2021,395:350-361.
- [42]WANG C W,JIN Z L,GUO L S,et al.New insights for highthroughput CO2 hydrogenation to high-quality fuel[J].Angewandte Chemie(International Ed),2024,63(42):e202408275.
- [43]ZHANG M,ZHANG L M,WANG M R,et al.The electronic interaction of encapsulating graphene layers with FeCo alloy promotes efficient CO2 Hydrogenation to light olefins[J].Chinese Journal of Catalysis,2025,68:366-375.
- [44]PAN X L,JIAO F,MIAO D Y,et al.Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis[J].Chemical Reviews,2021,121(11):6588-6609.
- [45]DE S,DOKANIA A,RAMIREZ A,et al.Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2utilization[J].ACS Catalysis,2020,10(23):14147-14185..
- [46]XIE J X,OLSBYE U.The oxygenate-mediated conversion of COx to Hydrocarbons:On the role of zeolites in tandem catalysis[J].Chemical Reviews,2023,123(20):11775-11816.
- [47]LI Z L,WANG J J,QU Y Z,et al.Highly selective conversion of carbon dioxide to lower olefins[J].ACS Catalysis,2017,7(12):8544-8548.
- [48]CHEN S Y,WANG J C,FENG Z D,et al.Hydrogenation of CO2to light olefins over ZnZrOx/SSZ-13[J].Angewandte Chemie(International Ed),2024,63(8):e202316874.
- [49]QIN L,WANG S,FAN S,et al.Selective hydrogenation of CO2into ethene and propene over a GaZrOx/H-SAPO-17 composite catalyst[J].ACS Catalysis,2023,13(18):11919-11933.
- [50]LU S Y,YANG H Y,ZHOU Z X,et al.Effect of In2O3 particle size on CO2 hydrogenation to lower olefins over bifunctional catalysts[J].Chinese Journal of Catalysis,2021,42(11):2038-2048.
- [51]GAO P,DANG S S,LI S G,et al.Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J].ACSCatalysis,2018,8(1):571-578.
- [52]LIU X L,WANG M H,ZHOU C,et al.Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J].Chemical Communications,2018,54(2):140-143.
- [53]WANG X Y,ZENG T,GUO X H,et al.Breaking the activityselectivity trade-off of CO2 hydrogenation to light olefins[J].Proceedings of the National Academy of Sciences of the United States of America,2024,121(37):e2408297121.
- [54]LIU X L,WANG M H,YIN H R,et al.Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J].ACS Catalysis,2020,10(15):8303-8314.
- [55]MOU J,FAN X Q,LIU F,et al.CO2 hydrogenation to lower olefins over Mn2O3-ZnO/SAPO-34 tandem catalysts[J].Chemical Engineering Journal,2021,421:129978.
- [56]LI J,YU T,MIAO D Y,et al.Carbon dioxide hydrogenation to light olefins over ZnO-Y2O3 and SAPO-34 bifunctional catalysts[J].Catalysis Communications,2019,129:105711.
- [57]CHEN J Y,WANG X,WU D K,et al.Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-) SAPO-34 catalysts:Strategy for product distribution[J].Fuel,2019,239:44-52.
- [58]WANG S,ZHANG L,ZHANG W Y,et al.Selective conversion of CO2 into propene and butene[J].Chem,2020,6(12):3344-3363.
- [59]SEDIGHI M,MOHAMMADI M.CO2 hydrogenation to light olefins over Cu-CeO2/SAPO-34 catalysts:Product distribution and optimization[J].Journal of CO2 Utilization,2020,35:236-244.
- [60]DING J,HUANG L,GONG W B,et al.CO2 hydrogenation to light olefins with high-performance Fe0.30Co0.15Zr0.45K0.10O1.63[J].Journal of Catalysis,2019,377:224-232.
- [61]ZHU J,ZHANG G H,LI W H,et al.Deconvolution of the particle size effect on CO2 hydrogenation over iron-based catalysts[J].ACS Catalysis,2020,10(13):7424-7433.
- [62]YANG Q X,FEDOROVA E A,PETROV S A,et al.Activity and selectivity descriptors for iron carbides in CO2 hydrogenation[J].Applied Catalysis B:Environmental,2023,327:122450.
- [63]ZENG Z,LI Z S,KANG L,et al.A monodisperse ε’-(CoxFe1-x)2.2Cbimetallic carbide catalyst for direct conversion of syngas to higher alcohols[J].ACS Catalysis,2022,12(10):6016-6028.
- [64]GNANAMANI M K,JACOBS G,HAMDEH H H,et al.Hydrogenation of carbon dioxide over co-Fe bimetallic catalysts[J].ACS Catalysis,2016,6(2):913-927.
- [65]SATTHAWONG R,KOIZUMI N,SONG C S,et al.Bimetallic Fe-Co catalysts for CO2 hydrogenation to higher hydrocarbons[J].Journal of CO2 Utilization,2013,3:102-106.
- [66]SATTHAWONG R,KOIZUMI N,SONG C S,et al.Light olefin synthesis from CO2 hydrogenation over K-promoted Fe-Co bimetallic catalysts[J].Catalysis Today,2015,251:34-40.
- [67]BRüBACH L,HODONJ D,PFEIFER P.Kinetic analysis of CO2hydrogenation to long-chain hydrocarbons on a supported iron catalyst[J].Industrial&Engineering Chemistry Research,2022,61(4):1644-1654.
- [68]WANG H Z,NIE X W,CHEN Y G,et al.Facet effect on CO2adsorption,dissociation and hydrogenation over Fe catalysts:Insight from DFT[J].Journal of CO2 Utilization,2018,26:160-170.
- [69]HAN S J,HWANG S M,PARK H G,et al.Identification of active sites for CO2 hydrogenation in Fe catalysts by first-principles microkinetic modelling[J].Journal of Materials Chemistry A,2020,8(26):13014-13023.
- [70]NIE X W,HAN G X,SONG C S,et al.Computational identification of facet-dependent CO2 initial activation and hydrogenation over iron carbide catalyst[J].Journal of CO2 Utilization,2022,59:101967.
- [71]CAO D B,LI Y W,WANG J G,et al.Chain growth mechanism of Fischer-Tropsch synthesis on Fe5C2(001)[J].Journal of Molecular Catalysis A:Chemical,2011,346(1-2):55-69.
- [72]CHEN J Y,HAN S J,PARK H G,et al.Benchmarking promoters of Fe/activated carbon catalyst for stable hydrogenation of CO2 to liquid hydrocarbons[J].Applied Catalysis B:Environmental,2023,325:122370.
- [73]WANG K Z,LI Z Q,GAO X H,et al.Novel heterogeneous Febased catalysts for carbon dioxide hydrogenation to long chain α-olefins-a review[J].Environmental Research,2024,242:117715.
- [74]ZHANG C,CAO C X,ZHANG Y L,et al.Unraveling the role of zinc on bimetallic Fe5C2-ZnO catalysts for highly selective carbon dioxide hydrogenation to high carbon α-olefins[J].ACSCatalysis,2021,11(4):2121-2133.
- [75]RAMIREZ A,GEVERS L,BAVYKINA A,et al.Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins[J].ACS Catalysis,2018,8(10):9174-9182.
- [76]RA E C,KIM K Y,KIM E H,et al.Recycling carbon dioxide through catalytic hydrogenation:Recent key developments and perspectives[J].ACS Catalysis,2020,10(19):11318-11345.
- [77]YANG Q X,KONDRATENKO V A,PETROV S A,et al.Identifying performance descriptors in CO2 hydrogenation over ironbased catalysts promoted with alkali metals[J].Angewandte Chemie (International Ed),2022,61(22):e202116517.
- [78]QIN C,DU Y X,WU K,et al.Facet-Controlled Cu-doped and K-promoted Fe2O3 nanosheets for efficient CO2 hydrogenation to liquid hydrocarbons[J].Chemical Engineering Journal,2023,467:143403.
- [79]YANG Y,XIANG H W,XU Y Y,et al.Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J].Applied Catalysis A:General,2004,266(2):181-194.
- [80]FISCHER N,HENKEL R,HETTEL B,et al.Hydrocarbons via CO2 hydrogenation over iron catalysts:The effect of potassium on structure and performance[J].Catalysis Letters,2016,146(2):509-517.
- [81]YOU Z Y,DENG W P,ZHANG Q H,et al.Hydrogenation of carbon dioxide to light olefins over non-supported iron catalyst[J].Chinese Journal of Catalysis,2013,34(5):956-963.
- [82]HAN Y,FANG C Y,JI X W,et al.Interfacing with carbonaceous potassium promoters boosts catalytic CO2 hydrogenation of iron[J].ACS Catalysis,2020,10(20):12098-12108.
- [83]TU W F,SUN C,ZHANG Z Z,et al.Chemical and structural properties of Na decorated Fe5C2-ZnO catalysts during hydrogenation of CO2 to linear α-olefins[J].Applied Catalysis B:Environmental,2021,298:120567.
- [84]LIANG B L,SUN T,MA J G,et al.Mn decorated Na/Fe catalysts for CO2 hydrogenation to light olefins[J].Catalysis Science& Technology,2019,9(2):456-464.
- [85]GOUD D,GUPTA R,MALIGAL-GANESH R,et al.Review of catalyst design and mechanistic studies for the production of olefins from anthropogenic CO2[J].ACS Catalysis,2020,10(23):14258-14282.
- [86]LIU X L,ZHANG C,TIAN P F,et al.Revealing the effect of sodium on iron-based catalysts for CO2 hydrogenation:Insights from calculation and experiment[J].The Journal of Physical Chemistry C,2021,125(14):7637-7646.
- [87]WANG J J,YOU Z Y,ZHANG Q H,et al.Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts[J].Catalysis Today,2013,215:186-193.
- [88]SHAFER W D,JACOBS G,GRAHAM U M,et al.Increased CO2hydrogenation to liquid products using promoted iron catalysts[J].Journal of Catalysis,2019,369:239-248.
- [89]SUN Z T,CHEN X,LU F X,et al.Effect of Rb promoter on Fe3O4 microsphere catalyst for CO2 hydrogenation to light olefins[J].Catalysis Communications,2022,162:106387.
- [90]LIU Y Q,MA Y L,PU X,et al.Influence of supports in CuFebased catalysts for hydrogenation of CO2 to ethanol[J].Fuel,2025,395:135192.
- [91]LIU Y,PAN X N,QIU Z P,et al.Mechanochemical synthesis of Na promoted Fe-Cu catalyst for CO2 hydrogenation to multicarbon hydrocarbons[J].Fuel,2025,393:135036.
- [92]XIANG W J,YASUDA S,TONOOKA M,et al.Potassiumdriven pathway modulation in CO2 hydrogenation:Tuning ethanol and liquid fuels synthesis over FeCuAl catalysts[J].Applied Catalysis B:Environment and Energy,2025,369:125157.
- [93]QADIR M I,?ILKOVáN,KVíTEK L,et al.Selective carbon dioxide hydrogenation to olefin-rich hydrocarbons by Cu/FeOx nanoarchitectures under atmospheric pressure[J].Nanomaterials,2025,15(5):353.
- [94]LIU J H,ZHANG A F,JIANG X,et al.Selective CO2 hydrogenation to hydrocarbons on Cu-promoted Fe-based catalysts:Dependence on Cu-Fe interaction[J].ACS Sustainable Chemistry&Engineering,2018,6(8):10182-10190.
- [95]SHI Z B,YANG H Y,GAO P,et al.Effect of alkali metals on the performance of CoCu/TiO2 catalysts for CO2 hydrogenation to long-chain hydrocarbons[J].Chinese Journal of Catalysis,2018,39(8):1294-1302.
- [96]NASRIDDINOV K,MIN J E,PARK H G,et al.Effect of Co,Cu,and Zn on FeAlK catalysts in CO2 hydrogenation to C5+hydrocarbons[J].Catalysis Science&Technology,2022,12(3):906-915.
- [97]LI Z L,WU W L,WANG M L,et al.Ambient-pressure hydrogenation of CO2 into long-chain olefins[J].Nature Communications,2022,13:2396.
- [98]ZHANG Y Q,JACOBS G,SPARKS D E,et al.CO and CO2hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts[J].Catalysis Today,2002,71(3-4):411-418.
- [99]ZHANG Y,SHINODA M,TSUBAKI N.Development of bimodal cobalt catalysts for Fischer-Tropsch synthesis[J].Catalysis Today,2004,93:55-63.
- [100]BAO J,HE J J,ZHANG Y,et al.A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction[J].Angewandte Chemie(International Ed),2008,47(2):353-356.
- [101]XIE C L,CHEN C,YU Y,et al.Tandem catalysis for CO2 hydrogenation to C2-C4 hydrocarbons[J].Nano Letters,2017,17(6):3798-3802.
- [102]DORNER R W,HARDY D R,WILLIAMS F W,et al.Heterogeneous catalytic CO2 conversion to value-added hydrocarbons[J].Energy&Environmental Science,2010,3(7):884-890.
- [103]WANG D,XIE Z H,POROSOFF M D,et al.Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics[J].Chem,2021,7(9):2277-2311.
- [104]盛海兵,孙燕,孙启文.Mn助剂对KFeCuZn催化剂结构及其CO2加氢制C2+醇催化性能的影响[J/OL].低碳化学与化工,1-8[2024-12-14].http://kns.cnki.net/kcms/detail/51.1807.tq.20241016.0848.002.html.SHENG Haibing,SUN Yan,SUN Qiwen.Effects of Mn additive on structures of KFeCuZn catalysts and their catalytic performances for CO2 hydrogenation to C2+alcohols[J/OL].Lowcarbon Chemistry and Chemical Engineering,1-8[2024-12-14].http://kns.cnki.net/kcms/detail/51.1807.tq.20241016.0848.002.html.
- [105]YANG H Y,DANG Y R,CUI X,et al.Selective synthesis of olefins via CO.2 hydrogenation over transition-metal-doped ironbased catalysts[J].Applied Catalysis B:Environmental,2023,321:122050.
- [106]YAO B Z,XIAO T C,MAKGAE O A,et al.Transforming carbon dioxide into jet fuel using an organic combustion-synthesized FeMn-K catalyst[J].Nature Communications,2020,11:6395.
- [107]ZHANG J L,LU S P,SU X J,et al.Selective formation of light olefins from CO2 hydrogenation over Fe-Zn-K catalysts[J].Journal of CO2 Utilization,2015,12:95-100.
- [108]ZHANG Z Q,HUANG G X,TANG X L,et al.Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO2 hydrogenation[J].Fuel,2022,309:122105.
- [109]HAN J,et al.Highly efficient CO2 hydrogenation to linear α-olefins on FeZnK catalysts with balanced Zn-O-Fe interfaces and Fe5C2 species[J].ACS Catalysis,2025,15(
- HAN Jianxiang
- CUI Xiwen
- SUN Jian
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- School of Chemical Engineering
- University of Chinese Academy of Sciences
- HAN Jianxiang
- CUI Xiwen
- SUN Jian
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- School of Chemical Engineering
- University of Chinese Academy of Sciences