Recent progress on integrated carbon dioxide capture and utilization technology
SUN Shuzhuang;GUO Yafei;ZHAO Chuanwen;SHAO Bin;HU Jun;SUN Nannan;LI Jianan;QIN Changlei;JIN Bo;LIANG Zhiwu;ZHANG Xiaoyu;LIU Wenqiang;ZHANG Yiran;QU Yakun;SUN Hongman;WANG Yaozu;YU Bocheng;ZHOU Hui;ZHAO Xiaotong;ZHU Yuan;WU Chunfei;
Abstract:
Carbon capture and utilization(CCU) technologies play key roles in controlling carbon emission and net zero, but the deployment of which are restricted by the complex intermediate steps and high energy and capital investment. Integrated carbon dioxide capture and utilization(ICCU) can synergistically achieve CO_2 upgrading and adsorbent regeneration through in-situ catalytic conversion,avoiding the energy-consuming intermediate steps such as temperature-pressure swing and CO_2 compression,storage and transportation in conventional CCU technologies,exhibiting a highly competitive industrial application prospect. This review summarizes the updated research progress in the field of ICCU. Classified by the reaction integrated with CO_2 capture, the design principle of“capture-catalysis” dual-functional materials(DFMs) are concluded,the structure-activity relationship between DFMs and carbon capture and catalytic conversion performance is discussed,and the reaction mechanism of in-situ catalytic conversion is comprehensively reviewed. Combined with non-thermal catalytic conversion technology, this paper reviews the frontier research progress and looks forward to its development prospects and directions in the field of ICCU. Based on the ICCU design coupled with other high-carbon emission processes, we expand the relevant application scenarios and provides ideas for related process innovation. This review summarizes the current status, prospects, and opportunities of ICCU systems and DFMs systems, and provides a comprehensive evaluation from materials to processes,providing an important reference for future research and industrialization of ICCU.
Key Words: integrated CO_2 capture and utilization;dual functional materials;reverse water-gas shift reaction;CO_2 methanation;dry reforming of methane catalytic mechanism;CO_2 capture;CO_2 catalytic conversion
Foundation: 国家自然科学基金资助项目(22478099,52276120);; 江苏省自然科学基金面上资助项目(BK20241882);; 湖南省重点研发计划资助项目(2024JK2084);; 长沙市自然科学基金资助项目(kq2402068);; 煤燃烧与低碳利用全国重点实验室开放基金资助项目(FSKLCCA2407);; 有色金属强化冶金新技术全国重点实验室开放课题资助项目(YSQH-ZYTS-24012)
Authors: SUN Shuzhuang;GUO Yafei;ZHAO Chuanwen;SHAO Bin;HU Jun;SUN Nannan;LI Jianan;QIN Changlei;JIN Bo;LIANG Zhiwu;ZHANG Xiaoyu;LIU Wenqiang;ZHANG Yiran;QU Yakun;SUN Hongman;WANG Yaozu;YU Bocheng;ZHOU Hui;ZHAO Xiaotong;ZHU Yuan;WU Chunfei;
DOI: 10.13226/j.issn.1006-6772.GPF25021001
References:
- [1]SCHNEIDER S H.The greenhouse effect:Science and policy[J].Science,1989,243(4892):771-781.
- [2]DAVIS S J,CALDEIRA K,MATTHEWS H D.Future CO2 emissions and climate change from existing energy infrastructure[J].Science,2010,329(5997):1330-1333.
- [3]张丽华,付悦.全球气候治理机制复杂化及中国应对[J].理论探讨,2024(1):47-53.ZHANG Lihua,FU Yue.Complexity of global climate governance mechanism and China’s response[J].Theoretical Investigation,2024(1):47-53.
- [4]姚悦,吕昊东,彭雪婷,等.全球碳管理发展态势与技术前沿进展[J].洁净煤技术,2024,30(10):32-40.YAO Yue,LYU Haodong,PENG Xueting,et al.Development trends and technological frontiers of global carbon management[J].Clean Coal Technology,2024,30(10):32-40.
- [5]ABAS N,KALAIR A,KHAN N.Review of fossil fuels and future energy technologies[J].Futures,2015,69:31-49.
- [6]ZOU C N,ZHAO Q,ZHANG G S,et al.Energy revolution:From a fossil energy era to a new energy era[J].Natural Gas Industry B,2016,3(1):1-11.
- [7]常鼎钧,唐淑玲.中国CCUS技术发展、趋势与建议[J].洁净煤技术,2024,30(S1):70-75.CHANG Dingjun,TANG Shuling.Development,trends,and suggestions for CCUS technology in China[J].Clean Coal Technology,2024,30(S1):70-75.
- [8]CHEN S Y,LIU J F,ZHANG Q,et al.A critical review on deployment planning and risk analysis of carbon capture,utilization,and storage (CCUS) toward carbon neutrality[J].Renewable and Sustainable Energy Reviews,2022,167:112537.
- [9]BUI M,ADJIMAN C S,BARDOW A,et al.Carbon capture and storage (CCS):The way forward[J].Energy&Environmental Science,2018,11(5):1062-1176.
- [10]KOORNNEEF J,RAMíREZ A,TURKENBURG W,et al.The environmental impact and risk assessment of CO2 capture,transport and storage-An evaluation of the knowledge base[J].Progress in Energy and Combustion Science,2012,38(1):62-86.
- [11]EKEMEZIE I O,DIGITEMIE W N.Carbon capture and utilization (ccu):A review of emerging applications and challenges[J].Engineering Science&Technology Journal,2024,5(3):949-961.
- [12]尹爱华,梁雄,康彦怀,等.二氧化碳捕集、利用与储存(CCUS)技术进展及趋势分析[J].山西化工,2024,44(2):251-252,260.YIN Aihua,LIANG Xiong,KANG Yanhuai,et al.Progress and Trend Analysis of Carbon Dioxide Capture,Utilization,and Storage(CCUS)Technology[J].Shanxi Chemical Industry,2024,44(2):251-252,260.
- [13]WANG P P,ROBINSON A J,PAPADOKONSTANTAKIS S.Prospective techno-economic and life cycle assessment:A review across established and emerging carbon capture,storage and utilization(CCS/CCU) technologies[J].Frontiers in Energy Research,2024,12:1412770.
- [14]SUN S Z,SUN H M,WILLIAMS P T,et al.Recent advances in integrated CO2 capture and utilization:A review[J].Sustainable Energy&Fuels,2021,5(18):4546-4559.
- [15]LV Z Z,CHEN S Z,HUANG X,et al.Recent progress and perspective on integrated CO2 capture and utilization[J].Current Opinion in Green and Sustainable Chemistry,2023,40:100771.
- [16]SUN H M,SUN S Z,LIU T,et al.Integrated CO2 capture and utilization:Selection,matching,and interactions between adsorption and catalytic sites[J].ACS Catalysis,2024,14(20):15572-15589.
- [17]ZHANG Y R,ZHAO S,LI L J,et al.Integrated CO2 capture and utilization:A review of the synergistic effects of dual function materials[J].Catalysis Science&Technology,2024,14(4):790-819.
- [18]WANG Q,LUO J Z,ZHONG Z Y,et al.CO2 capture by solid adsorbents and their applications:Current status and new trends[J].Energy&Environmental Science,2011,4(1):42-55.
- [19]江涛,魏小娟,王胜平,等.固体吸附剂捕集CO2的研究进展[J].洁净煤技术,2022,28(1):42-57.JIANG Tao,WEI Xiaojuan,WANG Shengping,et al.Research progress on solid sorbents for CO2 capture[J].Clean Coal Technology,2022,28(1):42-57.
- [20]BERMEJO-LóPEZ A,PEREDA-AYO B,GONZáLEZ-MARCOSJ A,et al.Ni loading effects on dual function materials for capture and in situ conversion of CO2 to CH4 using CaO or Na2CO3[J].Journal of CO2 Utilization,2019,34:576-587.
- [21]LIU T,WANG K Z,ZHANG W J,et al.Recent advances on dynamic phase reconstruction of Fe-based catalysts for catalytic CO2 hydrogenation to long chain α-olefins[J].Journal of Environmental Chemical Engineering,2024,12(5):113885.
- [22]LI Y Y,LIU Z S,RAO Z Q,et al.Experimental and theoretical insights into an enhanced CO2 methanation mechanism over a Ru-based catalyst[J].Applied Catalysis B:Environmental,2022,319:121903.
- [23]MEN Y L,LIU Y,WANG Q Q,et al.Highly dispersed Pt-based catalysts for selective CO2 hydrogenation to methanol at atmospheric pressure[J].Chemical Engineering Science,2019,200:167-175.
- [24]DANG C,YU H.Bifunctional catalysts for the coupling processes of CO2 capture and conversion:A minireview[J].Reaction Chemistry&Engineering,2025,10(1):10-21.
- [25]SUN S Z,SUN H M,WILLIAMS P T,et al.Recent advances in integrated CO2 capture and utilization:A review[J].Reaction Chemistry&Engineering,2021,5(18):4546-4559.
- [26]SULLIVAN I,GORYACHEV A,DIGDAYA I A,et al.Coupling electrochemical CO2 conversion with CO2 capture[J].Nature Catalysis,2021,4(11):952-958.
- [27]GALHARDO T S,BRAGA A H,ARPINI B H,et al.Optimizing active sites for high CO selectivity during CO2 hydrogenation over supported nickel catalysts[J].Journal of the American Chemical Society,2021,143(11):4268-4280.
- [28]郭真良,卞晓律,杜宇搏,等.集成二氧化碳捕集与甲烷化转化研究进展[J].燃料化学学报(中英文),2023,51(3):293-303.GUO Zhenliang,BIAN Xiaolv,DU Yubo,et al.Recent advances in integrated carbon dioxide capture and methanation technology[J].Journal of Fuel Chemistry and Technology,2023,51(3):293-303.
- [29]SUN S Z,ZHANG C,GUAN S L,et al.Ni/support-CaO bifunctional combined materials for integrated CO2 capture and reverse water-gas shift reaction:Influence of different supports[J].Separation and Purification Technology,2022,298:121604.
- [30]WANG X B,HU D,HAO Y D,et al.Continuous CO2 abatement via integrated carbon capture and conversion over Ni-MgO-Al2O3 dual-functional materials[J].Separation and Purification Technology,2023,322:124295.
- [31]SEN R,GOEPPERT A,KAR S,et al.Hydroxide based integrated CO2 capture from air and conversion to methanol[J].Journal of the American Chemical Society,2020,142(10):4544-4549.
- [32]AL-MAMOORI A,LAWSON S,ROWNAGHI A A,et al.Oxidative dehydrogenation of ethane to ethylene in an integrated CO2capture-utilization process[J].Applied Catalysis B:Environmental,2020,278:119329.
- [33]JIN B,WANG R Y,FU D T,et al.Chemical looping CO2 capture and in situ conversion as a promising platform for green and low-carbon industry transition:Review and perspective[J].Carbon Capture Science&Technology,2024,10:100169.
- [34]ZHOU Y Q,MA X L,YUSANJAN Q,et al.Active metal-free CaO-based dual-function materials for integrated CO2 capture and reverse water-gas shift[J].Chemical Engineering Journal,2024,485:149937.
- [35]SHEN Y M,SUN S Z,SUN H M,et al.Dual functional materials for integrated CO2 capture and utilization (ICCU):Design,fabrication,performances,and challenges[J].Chemical Engineering Journal,2025,512:162440.
- [36]LIU G Y,SUN S Z,SUN H M,et al.Integrated CO2 capture and utilisation:A promising step contributing to carbon neutrality[J].Carbon Capture Science&Technology,2023,7:100116.
- [37]GAO Z X,LI C H,YUAN Y N,et al.Utilizing metal oxide enhancement for efficient CO2 capture and conversion in calcium-based dual-function materials[J].Journal of the Energy Institute,2024,114:101630.
- [38]ZANG P C,TANG J Y,ZHANG X Y,et al.Strategies to improve CaO absorption cycle stability and progress of catalysts in Cabased DFMs for integrated CO2 capture-conversion:A critical review[J].Journal of Environmental Chemical Engineering,2023,11(5):111047.
- [39]LU B W,FAN Y,ZHI X Y,et al.Material design and prospect of dual-functional materials for integrated carbon dioxide capture and conversion[J].Carbon Capture Science&Technology,2024,12:100207.
- [40]SUN H M,WANG J Q,ZHAO J H,et al.Dual functional catalytic materials of Ni over Ce-modified CaO sorbents for integrated CO2 capture and conversion[J].Applied Catalysis B:Environmental,2019,244:63-75.
- [41]GUO Y F,WANG G D,YU J,et al.Tailoring the performance of Ni-CaO dual function materials for integrated CO2 capture and conversion by doping transition metal oxides[J].Separation and Purification Technology,2023,305:122455.
- [42]HU Y,XU Q,ZOU X J,et al.MxOy(M=Mg,Zr,La,Ce) modified Ni/CaO dual functional materials for combined CO2 capture and hydrogenation[J].International Journal of Hydrogen Energy,2023,48(64):24871-24883.
- [43]WU J Y,ZHENG Y H,FU J L,et al.Synthetic Ni-CaO-CeO2dual function materials for integrated CO2 capture and conversion via reverse water-gas shift reaction[J].Separation and Purification Technology,2023,317:123916.
- [44]WANG G D,GUO Y F,YU J,et al.Ni-CaO dual function materials prepared by different synthetic modes for integrated CO2capture and conversion[J].Chemical Engineering Journal,2022,428:132110.
- [45]HU Y,XU Q,SHENG Y,et al.Catalytic synthesis of CO by combining CO2 capture and hydrogenation over three-dimensional Ni/CaO networks[J].Energy&Fuels,2023,37(11):7871-7880.
- [46]SUN H M,WANG Y H,XU S J,et al.Understanding the interaction between active sites and sorbents during the integrated carbon capture and utilization process[J].Fuel,2021,286:119308.
- [47]YU J,WU X Y,LIU X S,et al.Investigation on integrated CO2capture and conversion performance of Ni-CaO dual-function materials pellets:Effect of Ni loading and optimization of operating parameters[J].Energy&Fuels,2023,37(21):16672-16687.
- [48]余钧,郭亚飞,王国栋,等.成型方法对Ni-CaO双功能材料CO2吸附与催化转化一体化性能的影响[J].精细化工,2023,40(1):130-138.YU Jun,GUO Yafei,WANG Guodong,et al.Effects of granulation on structure and integrated CO2 capture and conversion performance of Ni-CaO dual function materials[J].Fine Chemicals,2023,40(1):130-138.
- [49]XIE Z C,SHAO B,SUN Z Y,et al.Synergistic promotions of Kdoping on CO2 capture and in situ conversion[J].AIChE Journal,2024,70(2):e18294.
- [50]CHU J,LIANG C,XUE W Y,et al.Revealing the effect of synthetic method on integrated CO2 capture and conversion performance of Ni-Na2ZrO3 bifunctional materials[J].Separation and Purification Technology,2024,346:127534.
- [51]FU J L,HUANG P,GUO Y F,et al.Integrating calcium-looping and reverse-water-gas-shift reaction for CO2 capture and conversion:Screening of optimum catalyst[J].Separation and Purification Technology,2023,327:124991.
- [52]SUN S Z,HE S,WU C F.Ni promoted Fe-CaO dual functional materials for calcium chemical dual looping[J].Chemical Engineering Journal,2022,441:135752.
- [53]FAN Y,LU B W,ZHI X Y,et al.CeO2 enhanced performance of NiFe2O4-CaO for carbon capture and in situ hydrogenation conversion to CO[J].Journal of Environmental Chemical Engineering,2024,12(6):114321.
- [54]GAO Z X,YUAN Y N,YANG P P,et al.In situ capture and conversion of CO2 to CO using CaZrO3 promoted Fe-CaO dualfunctional material[J].ACS Sustainable Chemistry&Engineering,2024,12(29):10933-10946.
- [55]CHEN J,DUAN L B,SHI T,et al.A facile one-pot synthesis of CaO/CuO hollow microspheres featuring highly porous shells for enhanced CO2 capture in a combined Ca-Cu looping process via a template-free synthesis approach[J].Journal of Materials Chemistry A,2019,7(37):21096-21105.
- [56]HAN R,WANG Y,WEI L F,et al.Integrated CO2 capture and conversion by Cu/CaO dual function materials:Effect of in situ conversion on the sintering of CaO and its CO2 capture performance[J].Carbon Capture Science&Technology,2024,12:100220.
- [57]WANG Y Y,SUN S Z,ZHU Y,et al.Pivotal copper bimetallic oxide in hierarchical Calcium magnesium materials for lowtemperature carbon capture and utilization[J].Chemical Engineering Journal,2024,499:156264.
- [58]FAN Y,LU B W,HAN Z Q,et al.Morphology effects of CeO2 on the performance of CaO-Cu/CeO2 for integrated CO2 capture and conversion to CO[J].Separation and Purification Technology,2025,354:129294.
- [59]WANG I,HUANG S Y,WANG S H,et al.Mechanistic study of integrated CO2 capture and utilization over Cu and Al-modified calcined limestone with high stability using MFB-TGA-MS[J].Separation and Purification Technology,2024,333:125975.
- [60]SHAO B,HU G H,ALKEBSI K A M,et al.Heterojunction-redox catalysts of FexCoyMg10CaO for high-temperature CO2 capture and in situ conversion in the context of green manufacturing[J].Energy&Environmental Science,2021,14(4):2291-2301.
- [61]CAO R C,LIU L,LIU H Z,et al.Suppressing cyclic deactivation of magnesium-calcium dual-functional materials via dispersed metal-carbonate interfaces for integrated CO2 capture and conversion[J].Carbon Capture Science&Technology,2024,13:100275.
- [62]LIU J M,ZHANG J H,SUN H Y,et al.Ultrastable bifunctional multi-stage active metal catalysts for low concentration CO2capture and in situ conversion[J].Fuel,2024,357:129801.
- [63]ZHAO P P,MA B,TIAN J Q,et al.Highly stable FeNiMnCaOcatalyst for integrated CO2 capture and hydrogenation to CO[J].Chemical Engineering Journal,2024,482:148948.
- [64]SUN S Z,LV Z Z,QIAO Y T,et al.Integrated CO2 capture and utilization with CaO-alone for high purity syngas production[J].Carbon Capture Science&Technology,2021,1:100001.
- [65]SUN S Z,WANG Y Y,ZHAO X T,et al.One step upcycling CO2 from flue gas into CO using natural stone in an integrated CO2capture and utilisation system[J].Carbon Capture Science&Technology,2022,5:100078.
- [66]WANG I,WANG S H,LI Z S.Utilizing limestone alone for integrated CO2 capture and reverse water-gas reaction in a fixed bed reactor:Employing mass and gas signal analysis[J].Processes,2024,12(8):1548.
- [67]ABANADES J C,GRASA G.Production of a syngas and CaO by desorption-enhanced reverse water-gas shift of CaCO3 with H2[J].Chemical Engineering Journal,2024,493:152191.
- [68]WANG I,LI Z S.Near-equilibrium analysis of CO2 partial pressure on carbonate hydrogenation in an integrated carbon capture and utilization scheme[J].Carbon Capture Science&Technology,2024,13:100261.
- [69]SUN S Z,ZHANG Y R,LI C C,et al.Upgrading CO2 from simulated power plant flue gas via integrated CO2 capture and dry reforming of methane using Ni-CaO[J].Separation and Purification Technology,2023,308:122956.
- [70]WANG Y Y,SUN S Z,ZHU Y,et al.Simple marble dust for integrated carbon capture and utilization with simulated flue gas containing oxygen and water[J].Separation and Purification Technology,2024,333:125934.
- [71]SUN S Z,ZHANG C,CHEN S N,et al.Integrated CO2 capture and reverse water-gas shift reaction over CeO2-CaO dual functional materials[J].Royal Society Open Science,2023,10(4):230067.
- [72]WANG S H,WANG I,LI Z S.Metal oxide and nitrate-modified calcium gluconate-based sorbent with high stability for integrated carbon capture and utilization process[J].Separation and Purification Technology,2024,330:125502.
- [73]SASAYAMA T,KOSAKA F,LIU Y Y,et al.Integrated CO2capture and selective conversion to syngas using transitionmetal-free Na/Al2O3 dual-function material[J].Journal of CO2Utilization,2022,60:102049.
- [74]SASAYAMA T,ONO Y,KOSAKA F,et al.Continuous CO2capture and reduction to CO by circulating transition-metal-free dual-function material in fluidized-bed reactors[J].Separation and Purification Technology,2025,354:128602.
- [75]ZHAO X T,HU J,ZONG B,et al.Li/Na/K carbonate solar salts for enhanced and integrated carbon capture and utilization via reverse water gas shift (ICCU-RWGS)[J].Applied Catalysis B:Environment and Energy,2025,361:124623.
- [76]ZHAO X T,SUN S Z,WANG Y Y,et al.Enhanced CO2 capture and reverse water gas shift reaction using CaO in NaCl-CaCl2molten salt medium[J].Carbon Capture Science&Technology,2024,12:100221.
- [77]BIENIEK A,SUN S Z,JERZAK W,et al.Thermodynamic modelling of integrated carbon capture and utilisation process with CaO-based sorbents in a fixed-bed reactor[J].Journal of Environmental Management,2023,343:118201.
- [78]XIE Z C,TAN Z F,WANG K W,et al.Which will be a promising route among integrated CO2 capture and conversion to valuable chemicals[J].Energy Conversion and Management,2025,323:119269.
- [79]FREYMAN M C,HUANG Z,RAVIKUMAR D,et al.Reactive CO2 capture:A path forward for process integration in carbon management[J].Joule,2023,7(4):631-651.
- [80]QIAO Y T,LIU W S,GUO R N,et al.Techno-economic analysis of integrated carbon capture and utilisation compared with carbon capture and utilisation with syngas production[J].Fuel,2023,332:125972.
- [81]WANG F F,LI Y J,ZHANG C X,et al.The mechanism for in situ conversion of captured CO2 by CaO to CO in presence of H2during calcium looping process based on DFT study[J].Fuel,2022,329:125402.
- [82]SUN H M,WANG C F,SUN S Z,et al.XAS/DRIFTS/MS spectroscopy for time-resolved operando study of integrated carbon capture and utilisation process[J].Separation and Purification Technology,2022,298:121622.
- [83]HAN Z K,LIU W,GAO Y.Advancing the understanding of oxygen vacancies in ceria:Insights into their formation,behavior,and catalytic roles[J].JACS Au,2025,5(4):1549-1569.
- [84]CHEN X,QUAN J,YANG H,et al.The quenching-based enhancement on the strong metal-support interaction and pore structure of Ni-CaO for efficient CO2 capture and in-situ conversion[J].Chemical Engineering Journal,2025:159690.
- [85]TAIFAN W,BALTRUSAITIS J.CH4 conversion to value added products:Potential,limitations and extensions of a single step heterogeneous catalysis[J].Applied Catalysis B:Environmental,2016,198:525-547.
- [86]YARLAGADDA P S,MORTON L A,HUNTER N R,et al.Direct catalytic conversion of methane to higher hydrocarbons[J].Fuel Science and Technology International,1987,5(2):169-183.
- [87]CABALLERO A,PéREZ P J.Methane as raw material in synthetic chemistry:The final frontier[J].Chemical Society Reviews,2013,42(23):8809-8820.
- [88]ZAKARIA Z,KAMARUDIN S K.Direct conversion technologies of methane to methanol:An overview[J].Renewable and Sustainable Energy Reviews,2016,65:250-261.
- [89]XIAO X,WANG J J,LI J,et al.Enhanced low-temperature catalytic performance in CO2 hydrogenation over Mn-promoted NiMgAl catalysts derived from quaternary hydrotalcite-like compounds[J].International Journal of Hydrogen Energy,2021,46(66):33107-33119.
- [90]BOUKHA Z,BERMEJO-LóPEZ A,PEREDA-AYO B,et al.Study on the promotional effect of lanthana addition on the performance of hydroxyapatite-supported Ni catalysts for the CO2 methanation reaction[J].Applied Catalysis B:Environmental,2022,314:121500.
- [91]FU H C,YOU F,LI H R,et al.CO2 capture and in situ catalytic transformation[J].Frontiers in Chemistry,2019,7:525.
- [92]OMODOLOR I S,OTOR H O,ANDONEGUI J A,et al.Dualfunction materials for CO2 capture and conversion:A review[J].Industrial&Engineering Chemistry Research,2020,59(40):17612-17631.
- [93]TSIOTSIAS A I,CHARISIOU N D,YENTEKAKIS I V,et al.The role of alkali and alkaline earth metals in the CO2 methanation reaction and the combined capture and methanation of CO2[J].Catalysts,2020,10(7):812.
- [94]ARELLANO-TREVI?O M A,HE Z Y,LIBBY M C,et al.Catalysts and adsorbents for CO2 capture and conversion with dual function materials:Limitations of Ni-containing DFMs for flue gas applications[J].Journal of CO2 Utilization,2019,31:143-151.
- [95]PORTA A,VISCONTI C G,CASTOLDI L,et al.Ru-Ba synergistic effect in dual functioning materials for cyclic CO2 capture and methanation[J].Applied Catalysis B:Environmental,2021,283:119654.
- [96]ZHOU Z J,SUN N N,WANG B D,et al.2D-layered Ni-MgO-Al2O3 nanosheets for integrated capture and methanation of CO2[J].ChemSusChem,2020,13(2):360-368.
- [97]ZHENG Q H,FARRAUTO R,CHAU NGUYEN A.Adsorption and methanation of flue gas CO2 with dual functional catalytic materials:A parametric study[J].Industrial&Engineering Chemistry Research,2016,55(24):6768-6776.
- [98]SUN S Z,SUN H M,GUAN S L,et al.Integrated CO2 capture and methanation on Ru/CeO2-MgO combined materials:Morphology effect from CeO2 support[J].Fuel,2022,317:123420.
- [99]DUYAR M S,WANG S X,ARELLANO-TREVI?O M A,et al.CO2 utilization with a novel dual function material (DFM) for capture and catalytic conversion to synthetic natural gas:An update[J].Journal of CO2 Utilization,2016,15:65-71.
- [100]MA X L,CUI H J,CHENG Z M,et al.Application of engineered natural ores to intermediate-and high-temperature CO2 capture and conversion[J].AIChE Journal,2023,69(9):e18146.
- [101]VESELOVSKAYA J V,PARUNIN P D,NETSKINA O V,et al.Catalytic methanation of carbon dioxide captured from ambient air[J].Energy,2018,159:766-773.
- [102]MIGUEL C V,SORIA M A,ME
- integrated CO_2 capture and utilization
- dual functional materials
- reverse water-gas shift reaction
- CO_2 methanation
- dry reforming of methane catalytic mechanism
- CO_2 capture
- CO_2 catalytic conversion
- SUN Shuzhuang
- GUO Yafei
- ZHAO Chuanwen
- SHAO Bin
- HU Jun
- SUN Nannan
- LI Jianan
- QIN Changlei
- JIN Bo
- LIANG Zhiwu
- ZHANG Xiaoyu
- LIU Wenqiang
- ZHANG Yiran
- QU Yakun
- SUN Hongman
- WANG Yaozu
- YU Bocheng
- ZHOU Hui
- ZHAO Xiaotong
- ZHU Yuan
- WU Chunfei
- School of Chemical Engineering
- Zhengzhou University
- School of Energy and Mechanical Engineering
- Nanjing Normal University
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Key Laboratory for Advanced Materials
- East China Univ
- SUN Shuzhuang
- GUO Yafei
- ZHAO Chuanwen
- SHAO Bin
- HU Jun
- SUN Nannan
- LI Jianan
- QIN Changlei
- JIN Bo
- LIANG Zhiwu
- ZHANG Xiaoyu
- LIU Wenqiang
- ZHANG Yiran
- QU Yakun
- SUN Hongman
- WANG Yaozu
- YU Bocheng
- ZHOU Hui
- ZHAO Xiaotong
- ZHU Yuan
- WU Chunfei
- School of Chemical Engineering
- Zhengzhou University
- School of Energy and Mechanical Engineering
- Nanjing Normal University
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Key Laboratory for Advanced Materials
- East China Univ