扰流件排列对亚微米颗粒湍流团聚效率影响研究Study on the effect of disturbing structure arrangement on the turbulent agglomeration efficiency of the submicron particulate
李正鸿,刘鹤欣,杨富鑫,冯鹏,谭厚章
LI Zhenghong,LIU Hexin,YANG Fuxin,FENG Peng,TAN Houzhang
摘要(Abstract):
燃煤工业亚微米颗粒物的排放会危害环境和人体健康,而团聚方法是脱除亚微米颗粒的主要手段之一。通过搭建亚微米颗粒湍流团聚试验台,利用扫描电迁移率粒径谱仪(SMPS)测量湍流段前后进出口亚微米不同粒径数量浓度,研究不同扰流柱排列对亚微米颗粒团聚效率的影响,并结合Fluent软件分析了流场对颗粒团聚效率的影响。结果表明,亚微米颗粒湍流团聚效率与颗粒粒径大小有关,粒径较小的亚微米颗粒团聚效果较好,小粒径颗粒(粒径<30 nm)团聚效率在10%~90%,但对于大粒径颗粒(粒径>30 nm)团聚效率均在10%以下,颗粒直径大于502 nm时,不同流速下颗粒的团聚效率变为负值;对流速分析,发现亚微米颗粒团聚效率随流速增大出现先增大后减小的趋势,是由扰流区湍流强度及颗粒停留时间造成;探究扰流柱布置及排列对团聚效率的影响时,发现亚微米颗粒的团聚效率随扰流件的增大而减小,随扰流件横向间距的增大而逐渐减小,随纵向间距的增大先变大后减小,随排数的增大而变大,主要是扰流件尾迹区域内涡街强度与涡街长度的综合作用,涡街强度大会促进颗粒的碰撞几率,而涡街长度能提高颗粒在湍流区的停留时间,进而提高团聚效率。
The emission of submicron particles in coal-fired industry will harm the environment and human health,and the agglomeration method is one of the main means for removing sub-micron particles. In this work,an experimental platform for the turbulent agglomeration of submicron particulates was built. The Scanning Mobility Particle Sizer( SMPS) was used to measure the concentration of the inlet and outlet particulates. The effects of different disturbing structure arrangement on the submicron particulates turbulent agglomeration efficiency were studied. Moreover,the effects of flow field on particulate agglomeration efficiency were further analyzed by Fluent software. The results show that the turbulent agglomeration efficiency of micron particles is related to the particle size. The agglomeration efficiency of submicron particles with smaller particle size is better than that of submicron particles. the agglomeration efficiency of small particulates( particulates size <30 nm) is from 10% to 90%,but it is less than 10% for large particulates( particulates size >30 nm),and when the particle diameter is greater than 502 nm,the agglomeration efficiency becomes negative at different flow rates; according to the analysis of flow velocity,it is found that the agglomeration efficiency of sub-micron particles increases first and then decreases with the flow velocity,which is caused by the intensity of turbulence in the turbulence zone and the residence time of particles. What's more,when exploring the influence of the arrangement and arrangement of the spoiler on the agglomeration efficiency,the agglomeration efficiency of sub-micron particles decreases with the increase of the spoiler,and gradually decreases with the increase of the lateral spacing of the spoiler,first becomes larger and then decreases with the increase of the longitudinal spacing,and increase with the increase of the number of rows. The effects of the disturbing structure on the agglomeration efficiency are mainly influenced by the strength and length of the vortex. The strength of the vortex street promotes the collision probability of particles,and the length of the vortex street can increase the residence time of the particles in the turbulent zone,thereby increasing the agglomeration efficiency.
关键词(KeyWords):
扰流柱;亚微米颗粒;湍流团聚;团聚效率;涡街
disturbing column;sub-micron particulates;turbulent agglomeration;agglomeration efficiency;vortex
基金项目(Foundation): 国家重点研发计划资助项目(2016YFB0600605)
作者(Author):
李正鸿,刘鹤欣,杨富鑫,冯鹏,谭厚章
LI Zhenghong,LIU Hexin,YANG Fuxin,FENG Peng,TAN Houzhang
DOI: 10.13226/j.issn.1006-6772.IF20080618
参考文献(References):
- [1]刘含笑.燃煤超细颗粒物涡聚并数值模拟[D].北京:华北电力大学,2012.LIU Hanxiao.The aggregation simulation of the coal-fired ultrafine particulate[D].Beijing:North China Power electric University,2012.
- [2]SAMEK Lucyna,FURMAN Leszek,MIKRUT Magdalena,et al.Chemical composition of submicron and fine particulate matter collected in Krakow,Poland.Consequences for the APARICproject[J].Chemosphere:Environmental Toxicology and Risk Assessment,2017,187:430-439.
- [3]李云飞.燃煤烟气细颗粒物湍流团聚的研究[D].哈尔滨:哈尔滨工业大学,2014.LI Yunfei.Research on turbulent aggregation of fine particles in flue gas[D].Harbin:Harbin Institute of Technology,2014.
- [4]凡凤仙,张斯宏,白鹏博,等.基于声团聚的PM2.5脱除技术研究进展(Ⅱ):声团聚与其他机制联合作用[J].能源研究与信息,2017,33(4):205-210.FAN Fengxian,ZHANG Sihong,BAI Pengbo,et al.Research progress of PM2.5removal technology based on acoustic clustering(II):Sound agglomeration combined with other mechanisms[J].Energy Research and Information,2017,33(4):205-210.
- [5]WEI Feng,ZHANG Junying,ZHENG Chuguang.Agglomeration rate and action forces between atomized particles of agglomerator and inhaled-particles from coal combustion[J].Journal of Environmental Sciences,2005,17(2):335-339.
- [6]HAUTANEN Jukka,KILPELINEN Markku,KAUPPINEN Esko I,et al.Electrical agglomeration of aerosol particles in an alternating electric field[J].Aerosol Science and Technology,1995,22(2):181-189.
- [7]DEREVICH I V.Coagulation kernel of particles in a turbulent gas flow[J].International Journal of Heat and Mass Transfer,2007,50(7/8):1368-1387.
- [8]SAFFMAN G P,TURNER S J.Coagulation kernel of particles in a turbulent gas flow[J].International Journal of Heat and Mass Transfer,1988,50(7-8):1368-1387.
- [9]ABRAHAMSON J.Collision rates of small particles in a vigorously turbulent fluid[J].Chemical Engineering Science,1975,30(11):1371-1379.
- [10]WILLIAMS E J J,CRANE I R.Particle collision rate in turbulent flow[J].International Journal of Multiphase Flow,1983,9(4):421-435.
- [11]KIM D S,HONG S B,KIM Y J.Deposition and coagulation of polydisperse nanoparticles by Brownian motion and turbulence[J].Journal of Aerosol Science,2006,37(12):1781-1787.
- [12]YAGMUR Sercan,DOGAN Sercan,AKSOY Muharrem Hilmi,et al.Comparison of flow characteristics around an equilateral triangular cylinder via PIV and large eddy simulation methods[J].Flow Measurement and Instrumentation,2017,55:23-36.
- [13]陈亚伟,熊扬恒,潘祖明,等.烟气流速对湍流涡旋以及颗粒团聚影响的研究[J].动力工程学报,2017,37(5):408-412.CHEN Yawei,XIONG Yangheng,PAN Zuming,et al.Effects offlue gas velocity on the formation of turbulent vortex and the coagulation of fine particles[J].Journal of Power Engineering,2017,37(5):408-412.
- [14]章鹏飞,米建春,潘祖明.装置元件排列间距和颗粒浓度对细颗粒湍流聚并的影响[J].中国电机工程学报,2016,36(6):1625-1632,1775.ZHANG Pengfei,MI Jianchun,PAN Zuming.Influences of elemental arrangement and particle concentration on fine particle amalgamation[J].Proceedings of the CSEE,2016,36(6):1625-1632,1775.
- [15]刘含笑,郦建国,姚宇平,等.扰流柱不同排列方式对凝聚器扰流区流场的影响[C]//第十五届中国科协年会第9分会场:火电厂烟气净化与节能技术研讨会论文集.北京:[s.n.],2013:1-8.LIU Hanxiao,LI Jianguo,YAO Yuping,at al.Theinfluence of the flow field in coalescer device with different column arrangement[C]//China Association for Science and Technology Annual Conference:Thermal Power Plant Flue Gas Purification and Energy Saving Technology Seminar.Beijing:[s.n.],2013:1-8.
- [16]赵胜清,刘含笑.并列双圆柱不同间距扰流特性的数值模拟[C]//第十五届中国电除尘学术会议论文集.蚌埠:[s.n.],2013:175-178.ZHAO Shengqing,LIU Hanxiao.Numericalsimulation of disturbance characteristics of parallel double cylinders with different spacing[C]//The 15th China Electrostatic Precipitation Conference.Bengbu:[s.n.],2013:175-178.
- [17]孙德帅,郭庆杰,司崇殿.气体射流作用下燃煤可吸入颗粒的团聚[J].过程工程学报,2009,9(3):437-440.SUN Deshuai,GUO Qingjie,SI Chongdian.Agglomeration of combustible particles of coal under the action of gas jet[J].The Chinese Journal of Process Engineering,2009,9(3):437-440.
- [18]郭峰,陈孙伟,刘含笑,等.不同形状单扰流柱流场特性的数值研究[C]//第十五届中国电除尘学术会议论文集.蚌埠:[s.n.],2013:171-174.GUO Feng,CHEN Sunwei,LIU Hanxiao,et al.Numerical study on flow field characteristics of single-turbine columns with different shapes[C]//The 15th China Electrostatic Precipitation Conference.Bengbu:[s.n.],2013:171-174.
- [19]刘忠,刘含笑,冯新新,等.湍流聚并器流场和颗粒运动轨迹模拟[J].中国电机工程学报,2012,32(14):71-75.LIU Zhong,LIU Hanxiao,FENG Xinxin,et al.Simulation for the flow field of the turbulence coalescence device and the trajectory of particles[J].Proceedings of the CSEE,2012,32(14):71-75.
- [20]孙宗康,杨林军,陈帅,等.湍流团聚中不同尺度涡耦合促进燃煤细颗粒团聚与脱除研究[[J].中国电机工程学报,2020,40(6):1938-1946.SUN Zongkang,YANG Linjun,CHEN Shuai,et al.Promoting the agglomeration and removal of coal-fired fine particles by coupling of different-scale vortex in turbulent agglomeration[J].Proceedings of the CSEE,2020,40(6):1938-1946.
- 扰流柱
- 亚微米颗粒
- 湍流团聚
- 团聚效率
- 涡街
disturbing column - sub-micron particulates
- turbulent agglomeration
- agglomeration efficiency
- vortex