微藻固碳光合作用强化策略及展望Strategies and prospect of photosynthesis mechanism intensification of microalgae CO2 fixation
毛炜炜,张磊,尹庆蓉,李鹏程,胡毡,宋春风
MAO Weiwei,ZHANG Lei,YIN Qingrong,LI Pengcheng,HU Zhan,SONG Chunfeng
摘要(Abstract):
随着工业技术的飞速发展和化石能源的大量使用,CO_2排放量逐年增加,其引起的全球变暖是全球环境和经济领域最关注的话题之一。CO_2捕集利用与封存技术(CCUS)是我国实现碳达峰、碳中和目标的关键技术,对我国减少CO_2排放、构建生态文明具有重大意义。微藻具有生长速度快、对极端环境适应性强、生产成本低等优点,其介导的CCUS技术能吸收固定CO_2并将其转化为高附加值产品。该过程中微藻种类对确定CO_2固定效率和生物质产量起至关重要的作用。目前许多综述性研究都集中在利用微藻进行碳捕集、利用和储存方面,鲜见关于提高微藻碳捕集效率的最新策略相关综述。基于微藻固碳技术的发展现状,系统讨论了微藻的光合作用和固碳机理。回顾了微藻菌株固定CO_2最新进展,重点关注用于燃煤烟气的微藻改良和改进。全面总结了提高微藻光合效率的最新趋势和策略。随机诱变、适应性实验室进化和基因工程等几种修饰和改良微藻菌株的策略可用于产生理想的藻种。其中,基因工程不仅可截断集光复合体(LHC)的天线尺寸来提高光合效率,还可提高Rubisco的速度和选择性。通过向微藻培养物中添加纳米材料(NMs)进行干预策略,可增强CO_2在溶液中扩散/溶解,显著提高光系统Ⅱ(PSII)中的相对电子传输速率及微藻中活性氧(ROS)水平,从而改善对类胡萝卜素的一般光合作用。最后,明确了该技术面临的挑战和未来发展方向,提出应继续研发能耐受烟气的高效微藻固碳系统。
With the rapid development of industrial technology and the extensive use of fossil energy, the CO_2 emissions are increasing year by year, and the global warming it causes is one of the most concerned topics in the global environment and economy. CO_2 capture, utilization and storage(CCUS) is a key technology for China to achieve the goal of carbon peaking and carbon neutrality, which is of great significance for China to reduce CO_2 emissions and build ecological civilization. Microalgae have the advantages of fast growth rate, strong adaptability to extreme environments, and low production costs. Its mediated CCUS technology is able to absorb and fix CO_2 and convert it into high value-added products. In this process, the species of microalgae play a crucial role in determining CO_2 fixation efficiency and biomass production. At present, many review studies focus on the use of microalgae for carbon capture, utilization and storage, but there are few reviews on the latest strategies to improve the carbon capture efficiency of microalgae. Based on the development status of microalgae carbon fixation technology, the photosynthesis and carbon fixation mechanism in microalgae were systematically discussed. Then, this work reviewed recent advances in microalgal strains for CO_2 fixation, focusing on the improvement and modification of strains used in coal-fired flue gas. A further comprehensive summary of recent trends and strategies to improve photosynthetic efficiency in microalgae was presented. Several strategies to modify and improve microalgal strains, including random mutagenesis, adaptive laboratory evolution, and genetic engineering, can be used to generate the desirable microalgae strain. Among them, genetic engineering can not only truncate the antenna size of the light-harvesting complex(LHC) to improve photosynthetic efficiency, but also improve the velocity and selectivity of Rubisco. Strategies to intervene by adding nanomaterials(NMs) to microalgal cultures can enhance CO_2 diffusion/dissolution in solution, significantly increase the relative electron transport rate in photosynthetic system Ⅱ(PSII) as well as reactive oxygen species(ROS) levels in microalgae, thereby improving the general response to carotenoids photosynthesis. Finally, the current challenges and future development directions of this technology were clarified, and a high-efficiency microalgae carbon sequestration system that tolerates flue gas should continue to be developed. Finally, the current challenges and future development direction of this technology were clarified. Efficient microalgae carbon fixation systems should be researched and developd that can tolerate flue gas.
关键词(KeyWords):
微藻;全球变暖;碳中和;光合作用;CO_2减排;生物质生产
microalgae;global warming;carbon neutrality;photosynthesis;CO_2 emission reduction;biomass production
基金项目(Foundation): 国家重点研发计划资助项目(2017YFE0127200)
作者(Author):
毛炜炜,张磊,尹庆蓉,李鹏程,胡毡,宋春风
MAO Weiwei,ZHANG Lei,YIN Qingrong,LI Pengcheng,HU Zhan,SONG Chunfeng
DOI: 10.13226/j.issn.1006-6772.CRU22071101
参考文献(References):
- [1] LI S,LI X,HO S-H.How to enhance carbon capture by evolution of microalgal photosynthesis?[J].Separation and Purification Technology,2022,291:120951.
- [2] IEA.Globalenergy review:CO2 emissions in 2021[R].Paris:International Energy Agency,2022.
- [3] DANESHVAR E,WICKER R J,SHOW P L,et al.Biological-ly-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization:A review[J].Chemical Engineering Journal,2022,427:130884.
- [4] 黄晶,马乔,史明威,等.碳中和视角下CCUS技术发展进程及对策建议[J].环境影响评价,2022,44(1):42-47.HUANG Jing,MA Qiao,SHI Mingwei,et al.Process and suggestions of CCUS technology development from the perspective of carbon neutrality[J].Environmental Impact Assessment,2022,44(1):42-47.
- [5] LIAO Q,CHANG H X,FU Q,et al.Physiological-phased kinetic characteristics of microalgae Chlorella vulgaris growth and lipid synthesis considering synergistic effects of light,carbon and nutrients[J].Bioresource Technology,2018,250:583-590.
- [6] CHOI H I,HWANG S W,SIM S J.Comprehensive approach to improving life-cycle CO2 reduction efficiency of microalgal biorefineries:A review[J].Bioresource Technology,2019,291:121879.
- [7] CHEN Y,XU C,VAIDYANATHAN S.Microalgae:A robust "green bio-bridge" between energy and environment[J].Critical Reviews in Biotechnology,2018,38(3):351-368.
- [8] BOHUTSKYI P,BOUWER E.Biogas Production fromalgae and cyanobacteria through anaerobic digestion:A review,analysis,and research needs[M]//LEE J W.Advanced biofuels and bioproducts.New York:Springer,2013:873-975.
- [9] ABDELKAREEM M A,LOOTAH M A,SAYED E T,et al.Fuel cells for carbon capture applications[J].Science of the Total Environment,2021,769:144243.
- [10] WANG Z,CHENG J,SONG W,et al.CO2 gradient domestication produces gene mutation centered on cellular light response for efficient growth of microalgae in 15% CO2 from flue gas[J].Chemical Engineering Journal,2022,429:131968.
- [11] IQBAL K,SAXENA A,PANDE P,et al.Microalgae-bacterial granular consortium:Striding towards sustainable production of biohydrogen coupled with wastewater treatment[J].Bioresource Technology,2022,354:127203.
- [12] LI G,HU R,WANG N,et al.Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact:Pyrolysis performances and life cycle assessment[J].Journal of Cleaner Production,2022,355:131768.
- [13] YASSIN M M,ANDERSON J A,DIMITRAKIS G A,et al.Effe-cts of the heating source on the regeneration performance of different adsorbents under post-combustion carbon capture cyclic operations:A comparative analysis[J].Separation and Purification Technology,2021,276:119326.
- [14] KINNUNEN V,CRAGGS R,RINTALA J.Influence of temperature and pretreatments on the anaerobic digestion of wastewater grown microalgae in a laboratory-scale accumulating-volume reactor[J].Water Research,2014,57:247-257.
- [15] RODAS-ZULUAGA L I,CASTA?EDA-HERNáNDEZ L,CASTILLO-VACAS E I,et al.Bio-capture and influence of CO2 on the growth rate and biomass composition of the microalgae Botryococcus braunii and Scenedesmus sp[J].Journal of CO2 Utilization,2021,43:101371.
- [16] LI S,LI F,ZHU X,et al.Biohydrogen production from microalgae for environmental sustainability[J].Chemosphere,2022,291:132717.
- [17] SINGH S P,SINGH P.Effect of CO2 concentration on algal growth:A review[J].Renewable and Sustainable Energy Reviews,2014,38:172-179.
- [18] GIORDANO M,BEARDALL J,RAVEN J A.CO2 concentrating mechanisms in algae:Mechanisms,environmental modulation,and evolution[J].Annual Review of Plant Biology,2005,56(1):99-131.
- [19] IVERSON T M.Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis[J].Current Opinion in Chemical Biology,2006,10(2):91-100.
- [20] BALLOTTARI M,GIRARDON J,DALL′OSTO L,et al.Evolution and functional properties of Photosystem II:Light harvesting complexes in eukaryotes[J].Biochimica et Biophysica Acta (BBA)-Bioenergetics,2012,1817(1):143-157.
- [21] NEILSON J A D,DURNFORD D G.Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes[J].Photosynthesis Research,2010,106(1):57-71.
- [22] PRASAD R,GUPTA S K,SHABNAM N,et al.Role of microalgae in global CO2 sequestration:Physiological mechanism,recent development,challenges and future prospective[J].Sustainability,2021,13(23):13061.
- [23] HO S H,CHEN C Y,LEE D J,et al.Perspectives on microalgal CO2-emission mitigation systems:A review[J].Biotechnology Advances,2011,29(2):189-198.
- [24] YANG C,HUA Q,SHIMIZU K.Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic,mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions[J].Biochemical Engineering Journal,2000,6(2):87-102.
- [25] MIN M,HU B,ZHOU W,et al.Mutual influence of light and CO2 on carbon sequestration via cultivating mixotrophic alga Auxenochlorella protothecoides UMN280 in an organic carbon-rich wastewater[J].Journal of Applied Phycology,2012,24(5):1099-1105.
- [26] DURALL C,LINDBLAD P.Mechanisms of carbon fixation and engineering for increased carbon fixation in cyanobacteria[J].Algal Research,2015,11:263-270.
- [27] ZHAO B,SU Y.Process effect of microalgal-carbon dioxide fixation and biomass production:A review[J].Renewable and Sustainable Energy Reviews,2014,31:121-132.
- [28] PRICE G D.Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism[J].Photosynthesis Research,2011,109(1):47-57.
- [29] IWAKI T,HARANOH K,INOUE N,et al.Expression of foreign type I ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) stimulates photosynthesis in cyanobacterium Synechoco-ccus PCC7942 cells[J].Photosynthesis Research,2006,88(3):287-297.
- [30] GHOSHAL D,GOYAL A.Carbon concentration mechanism(s) in unicellular green algae and cyanobacteria[J].Journal of Plant Biochemistry and Biotechnology,2001,10(2):83-90.
- [31] 秦燕,范波,苗贵东.衣藻二氧化碳浓缩机制及其调控的研究进展[J].安徽农业科学,2021,49(4):20-25,28.QIN Yan,FAN Bo,MIAO Guidong.Research progress on the CO2 concentrating mechanism and its regulation in chlamydomonas[J].Journal of Anhui Agricultural Sciences,2021,49(4):20-25,28.
- [32] SPALDING M H.Microalgal carbon-dioxide-concentrating mechanisms:Chlamydomonas inorganic carbon transporters[J].Journal of Experimental Botany,2008,59(7):1463-1473.
- [33] HUANG Y,CHENG J,LU H,et al.Transcriptome and key genes expression related to carbon fixation pathways in Chlorella PY-ZU1 cells and their growth under high concentrations of CO2[J].Biotechnology for Biofuels,2017,10(1):1-10.
- [34] TANG D,HAN W,LI P,et al.CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels[J].Bioresource Technology,2011,102(3):3071-3076.
- [35] CHENG J,HUANG Y,FENG J,et al.Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors[J].Bioresource Technology,2013,144:321-327.
- [36] MONDAL M,GHOSH A,GAYEN K,et al.Carbon dioxide bio-fixation by Chlorella sp.BTA 9031 towards biomass and lipid production:Optimization using central composite design approach[J].Journal of CO2 Utilization,2017,22:317-329.
- [37] COMITRE A A,VAZ B D S,COSTA J A V,et al.Renewal of nanofibers in Chlorella fusca microalgae cultivation to increase CO2 fixation[J].Bioresource Technology,2021,321:124452.
- [38] DUARTE J H,FANKA L S,COSTA J A V.Utilization of simulated flue gas containing CO2,SO2,NO and ash for Chlorella fusca cultivation[J].Bioresource Technology,2016,214:159-165.
- [39] AGHAALIPOUR E,AKBULUT A,GüLLü G.Carbon dioxide ca-pture with microalgae species in continuous gas-supplied closed cultivation systems[J].Biochemical Engineering Journal,2020,163:107741.
- [40] ANJOS M,FERNANDES B D,VICENTE A A,et al.Optimization of CO2 bio-mitigation by Chlorella vulgaris[J].Bioresource Technology,2013,139:149-154.
- [41] BASU S,ROY A S,MOHANTY K,et al.Enhanced CO2 sequestration by a novel microalga:Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam,India[J].Bioresource Technology,2013,143:369-377.
- [42] HO S H,CHEN W M,CHANG J S.Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production[J].Bioresource Technology,2010,101(22):8725-8730.
- [43] ZHU B,XIAO T,SHEN H,et al.Effects of CO2 concentration on carbon fixation capability and production of valuable substances by Spirulina in a columnar photobioreactor[J].Algal Research,2021,56:102310.
- [44] CARDIAS B B,MORAIS M G D,COSTA J A V.CO2 conver-sion by the integration of biological and chemical methods:Spirulina sp.LEB 18 cultivation with diethanolamine and potassium carbonate addition[J].Bioresource Technology,2018,267:77-83.
- [45] TAN Y,FANG M,JIN L,et al.Culture characteristics of the atmospheric and room temperature plasma-mutated Spirulina platensis mutants in CO2 aeration culture system for biomass production[J].Journal of Bioscience and Bioengineering,2015,120(4):438-443.
- [46] DE MORAIS M G,COSTA J A V.Biofixation of carbon dioxide by Spirulina sp.and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor[J].Journal of Biotechnology,2007,129(3):439-445.
- [47] CHIU S Y,KAO C Y,TSAI M T,et al.Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration[J].Bioresource Technology,2009,100(2):833-838.
- [48] CHIANG C L,LEE C M,CHEN P C.Utilization of the cyanobacteria Anabaena sp.CH1 in biological carbon dioxide mitigation processes[J].Bioresource Technology,2011,102(9):5400-5405.
- [49] SYDNEY E B,STURM W,DE CARVALHO J C,et al.Potential carbon dioxide fixation by industrially important microalgae[J].Bioresource Technology,2010,101(15):5892-5896.
- [50] MOGHIMIFAM R,NIKNAM V,EBRAHIMZADEH H,et al.CO2 biofixation and fatty acid composition of two indigenous Dunaliella sp.isolates (ABRIINW-CH2 and ABRIINW-SH33) in response to extremely high CO2 levels[J].Bioprocess and Biosystems Engineering,2020,43(9):1587-1597.
- [51] PINEDA-CAMACHO G,GUILLéN-JIMéNEZ F D M,PéREZ-SáNCHEZ A,et al.Effect of CO2 on the generation of biomass and lipids by Monoraphidium contortum:A promising microalga for the production of biodiesel[J].Bioresource Technology Reports,2019,8:100313.
- [52] WANG Z,WEN X,XU Y,et al.Maximizing CO2 biofixation and lipid productivity of oleaginous microalga Graesiella sp.WBG-1 via CO2-regulated pH in indoor and outdoor open reactors[J].Science of the Total Environment,2018,619/620:827-833.
- [53] PATEL V K,MAJI D,PANDEY S S,et al.Rapid budding EMS mutants of Synechocystis PCC 6803 producing carbohydrate or lipid enriched biomass[J].Algal Research,2016,16:36-45.
- [54] CHATURVEDI R,FUJITA Y.Isolation of enhanced eicosapentaenoic acid producing mutants of Nannochloropsis oculata ST-6 using ethyl methane sulfonate induced mutagenesis techniques and their characterization at mRNA transcript level[J].Phycological Research,2006,54(3):208-219.
- [55] KAO C Y,CHIU S Y,HUANG T T,et al.A mutant strain of microalga Chlorella sp.for the carbon dioxide capture from biogas[J].Biomass and Bioenergy,2012,36:132-140.
- [56] TANADUL O U M,NOOCHANONG W,JIRAKRANWONG P,et al.EMS-induced mutation followed by quizalofop-screening increased lipid productivity in Chlorella sp.[J].Bioprocess and Biosystems Engineering,2018,41(5):613-619.
- [57] LEE T M,TSENG Y F,CHENG C L,et al.Characterization of a heat-tolerant Chlorella sp.GD mutant with enhanced photosy-nthetic CO2 fixation efficiency and its implication as lactic acid[J].Biotechnology for Biofuels,2017,10(1):1-12.
- [58] KUO C M,LIN T H,YANG Y C,et al.Ability of an alkali-tolerant mutant strain of the microalga Chlorella sp.AT1 to capture carbon dioxide for increasing carbon dioxide utilization efficiency[J].Bioresource Technology,2017,244:243-251.
- [59] CHENG J,ZHU Y,ZHANG Z,et al.Modification and improvement of microalgae strains for strengthening CO2 fixation from coal-fired flue gas in power plants[J].Bioresource Technology,2019,291:121850.
- [60] LIU S,ZHAO Y,LIU L,et al.Improvingcell growth and lipid accumulation in green microalgae Chlorella sp.via UV irradiation[J].Applied Biochemistry and Biotechnology,2015,175(7):3507-3518.
- [61] TILLICH U M,LEHMANN S,SCHULZE K,et al.Theoptimal mutagen dosage to induce point-mutations in Synechocystis sp.PCC6803 and its application to promote temperature tolerance[J].Plos One,2012,7(11):e49467.
- [62] LI F F,YANG Z H,ZENG R,et al.Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber[J].Industrial & Engineering Chemistry Research,2011,50(10):6496-6502.
- [63] QI F,WU D,MU R,et al.Characterization of amicroalgal UV mutant for CO2 biofixation and biomass production[J].Biomed Research International,2018,2018:4375170.
- [64] KUMAR V,SHARMA N,JAISWAL K K,et al.Microalgae with a truncated light-harvesting antenna to maximize photosynthetic efficiency and biomass productivity:Recent advances and current challenges[J].Process Biochemistry,2021,104:83-91.
- [65] 卢鸿翔.核诱变及碳胁迫促进微藻光合作用及生长固碳的机理研究[D].杭州:浙江大学,2018.
- [66] AGARWAL R,RANE S S,SAINIS J K.Effects of60Co γ radiation on thylakoid membrane functions in Anacystis nidulans[J].Journal of Photochemistry and Photobiology B:Biology,2008,91(1):9-19.
- [67] ZHU Y,CHENG J,ZHANG Z,et al.Mutation of Arthrospira platensis by gamma irradiation to promote phenol tolerance and CO2 fixation for coal-chemical flue gas reduction[J].Journal of CO2 Utilization,2020,38:252-261.
- [68] CHENG J,LU H,HE X,et al.Mutation of Spirulina sp.by nuclear irradiation to improve growth rate under 15% carbon dioxide in flue gas[J].Bioresource Technology,2017,238:650-656.
- [69] CHENG J,FENG J,CHENG R,et al.Gene expression and metabolic pathways related to cell growth and lipid synthesis in diatom Nitzschia ZJU2 after two rounds of mutagenesis by γ-rays[J].RSC advances,2014,4(54):28463-28470.
- [70] LU H,CHENG J,WANG Z,et al.Improved photosynthetic ch-aracteristics of Chlorella mutant MS700 induced by nuclear radiation[J].Process Biochemistry,2020,99:154-159.
- [71] WANG X,LIU S F,WANG Z Y,et al.A waste upcycling loop:Two-factor adaptive evolution of microalgae to increase polyunsaturated fatty acid production using food waste[J].Journal of Cleaner Production,2022,331:130018.
- [72] ZHANG S,LIU Z.Advances in the biological fixation of carbon dioxide by microalgae[J].Journal of Chemical Technology & Biotechnology,2021,96(6):1475-1495.
- [73] YE Q,SHEN Y,ZHANG Q,et al.Life-cycle assessment of flue gas CO2 fixation from coal-fired power plant and coal chemical plant by microalgae[J].Science of the Total Environment,2022,848:157728.
- [74] LI D,WANG L,ZHAO Q,et al.Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp.by adaptive laboratory evolution[J].Bioresource Technology,2015,185:269-275.
- [75] ASLAM A,THOMAS-HALL S R,MUGHAL T A,et al.Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas[J].Bioresource Technology,2017,233:271-283.
- [76] CHENG D,LI X,YUAN Y,et al.Adaptive evolution and carbon dioxide fixation of Chlorella sp.in simulated flue gas[J].Science of the Total Environment,2019,650:2931-2938.
- [77] SINGH CHAUHAN D,SAHOO L,MOHANTY K.Maximize microalgal carbon dioxide utilization and lipid productivity by using toxic flue gas compounds as nutrient source[J].Bioresource Technology,2022,348:126784.
- [78] RADAKOVITS R,JINKERSON R E,DARZINS A,et al.Gen-etic engineering of algae for enhanced biofuel production[J].Eukaryotic Cell,2010,9(4):486-501.
- [79] BARATI B,ZENG K,BAEYENS J,et al.Recent progress in genetically modified microalgae for enhanced carbon dioxide sequestration[J].Biomass and Bioenergy,2021,145:105927.
- [80] LI J,PAN K,TANG X,et al.The molecular mechanisms of Chlorella sp.responding to high CO2:A study based on comparative transcriptome analysis between strains with high-and low-CO2 tolerance[J].Science of the Total Environment,2021,763:144185.
- [81] XU X,GU X,WANG Z,et al.Progress,challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae[J].Renewable and Sustainable Energy Reviews,2019,110:65-82.
- [82] WEI L,WANG Q,XIN Y,et al.Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by over expression of RuBisCO activase[J].Algal Research,2017,27:366-375.
- [83] HO M Y,SHEN G,CANNIFFE D P,et al.Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II[J].Science,2016,353:aaf9178.
- [84] JEONG J,BAEK K,KIRST H,et al.Loss of CpSRP54 function leads to a truncated light-harvesting antenna size in Chlamydomonas reinhardtii[J].Biochimica et Biophysica Acta (BBA)-Bioenergetics,2017,1858(1):45-55.
- [85] LI W,KANG S.Research status and development ideas of microalgae carbon se-questration technology[J].Biotechn,2011,6:22-27.
- [86] NADUTHODI M I S,CLAASSENS N J,D′ADAMO S,et al.Synthetic biology approaches to enhance microalgal productivity[J].Trends in Biotechnology,2021,39(10):1019-1036.
- [87] NG I S,TAN S I,KAO P H,et al.Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals[J].Biotechnology Journal,2017,12(10):1600644.
- [88] MISHRA S,JOSHI B,DEY P,et al.CCM in photosynthetic bact-eria and marine alga[J].Journal of Pharmacognosy and Phytochemistry,2018,7(6):928-937.
- [89] HU P,BORGLIN S,KAMENNAYA N A,et al.Metabolic phenotyping of the cyanobacterium Synechocystis 6803 engineered for production of alkanes and free fatty acids[J].Applied Energy,2013,102:850-859.
- [90] FUJIHASHI M,NISHITANI Y,KIRIYAMA T,et al.Mutation design of a thermophilic Rubisco based on three-dimensional structure enhances its activity at ambient temperature[J].Proteins:Structure,Function,and Bioinformatics,2016,84(10):1339-1346.
- [91] YANG B,LIU J,MA X,et al.Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO2 fixation in microalgae[J].Biotechnology for Biofuels,2017,10(1):1-13.
- [92] YANG B,HUANG X,QIN G.Variable selection in ROC curve analysis with focused information criteria[J].Statistics and Its Interface,2017,10(2):229-238.
- [93] LIN W R,LAI Y C,SUNG P K,et al.Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae[J].Journal of the Taiwan Institute of Chemical Engineers,2018,93:131-141.
- [94] HOGETSU D,MIYACHI S.Role of carbonic anhydrase in photosynthetic CO2 fixation in Chlorella[J].Plant and Cell Physiology,1979,20(4):747-756.
- [95] WEI L,SHEN C,EL HAJJAMI M,et al.Knockdown of carbonate anhydrase elevates Nannochloropsis productivity at high CO2 level[J].Metabolic Engineering,2019,54:96-108.
- [96] ZHANG C,LI S,HO S H.Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia:A critical review[J].Bioresource Technology,2021,342:126056.
- [97] MELIS A.Solar energy conversion efficiencies in photosynthes-is:Minimizing the chlorophyll antennae to maximize efficiency[J].Plant Science,2009,177(4):272-280.
- [98] MELIS A,NEIDHARDT J,BENEMANN J R.Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells[J].Journal of Applied Phycology,1998,10(6):515-525.
- [99] SHARON-GOJMAN R,LEU S,ZARKA A.Antenna size reduction and altered division cycles in self-cloned,marker-free genetically modified strains of Haematococcus pluvialis[J].Algal Research,2017,28:172-183.
- [100] BECKMANN J,LEHR F,FINAZZI G,et al.Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii[J].Journal of Biotechnology,2009,142(1):70-77.
- [101] MUSSGNUG J H,THOMAS-HALL S,RUPPRECHT J,et al.Engineering photosynthetic light capture:Impacts on improved solar energy to biomass conversion[J].Plant Biotechnology Journal,2007,5(6):802-814.
- [102] KIRST H,GARCIA-CERDAN J G,ZURBRIGGEN A,et al.Truncated photosystem chlorophyll antenna size in the green microalga Chlamydomonas reinhardtii upon deletion of the TLA3-CpSRP43 gene[J].Plant Physiology,2012,160(4):2251-2260.
- [103] KROMDIJK J,G?OWACKA K,LEONELLI L,et al.Improving photosynthesis and crop productivity by accelerating recovery from photoprotection[J].S
- 微藻
- 全球变暖
- 碳中和
- 光合作用
- CO_2减排
- 生物质生产
microalgae - global warming
- carbon neutrality
- photosynthesis
- CO_2 emission reduction
- biomass production