循环流化床锅炉负荷快速调节技术现状及发展趋势Status and development trend of rapid load regulation technology for circulating fluidized bed boiler
胡仙楠,邓博宇,刘欢鹏,杨冬,杨海瑞
HU Xiannan,DENG Boyu,LIU Huanpeng,YANG Dong,YANG Hairui
摘要(Abstract):
在碳达峰、碳中和目标背景下,我国正加快构建新能源占比逐渐提高的新型电力系统,目前煤电正是消纳可再生能源大规模并网的最经济调节电源。循环流化床锅炉机组因自身天然优势在煤电深度灵活调峰中担任重要角色,但其独特的结构和运行方式导致变负荷速率偏低,消纳高比例新能源并网的能力亟待提高。分析了制约循环流化床锅炉变负荷速率的影响因素,包括气固两相流动的惯性、炉侧水侧传热的惯性、固体颗粒燃烧的惯性、水动力安全性、机炉动态匹配问题等,并解释了产生惯性的物理机制。归纳了提高循环流化床机组快速变负荷能力的关键技术,通过加快流动参数、提高传热系数、减小炉侧热容、增强炉侧水侧间的传热、强化燃烧反应、优化控制策略等方法,考虑工业尺寸锅炉的可行性,提出了一套综合优化技术方案,即“智能吞吐”系统的设想。在1台135 MW循环流化床锅炉上进行验证,结果表明,锅炉平均变负荷变化率可提升16%,最大负荷变化率短时间内可持续达到4%/min左右。在此基础上,对宽负荷灵活运行的循环流化床锅炉机组的设计思路进行展望,用数据驱动热力系统动态模型,融合创新技术的热力系统多时空匹配运行技术,构建“三自一体”的先进协同控制系统,并参考成熟的煤粉炉蓄能利用技术,为将来实际工业应用提供理论指导。
In the background of the carbon peaking and carbon neutrality goals, China is accelerating the construction of a new power system in which the proportion of new energy sources is gradually increasing, and coal-fired power plants are currently the most economical regulating power sources for the large-scale grid connection of renewable energy. Due to their inherent advantages, circulating fluidized bed boiler units are crucial for the deep and flexible peaking of coal-fired power plants. However, because of their peculiar design and mode of operation, these units have a low load change rate, making it necessary to increase their capacity to absorb large amounts of new energy for the grid. The influencing factors that governed the load change rate of circulating fluidized bed boilers were analyzed including the inertia of gas-solid two-phase flow, combustion of solid particles, heat transfer between the water side and the furnace side, hydrodynamic safety, dynamic matching problem of the turbine and boiler, and the physical mechanism of inertia generation was also explained. The key technologies to improve the rapid load change capability of the circulating fluidized bed unit were summarized. By accelerating the flow parameters, improving the heat transfer coefficient, reducing the heat capacity of the furnace side, enhancing the heat transfer between the furnace and the water side, strengthening the combustion reaction, optimizing the control strategy, and considering the feasibility of industrial size boilers, a comprehensive optimization technology solution was proposed, namely the concept of an "intelligent take in/out" system, which was validated in a 135 MW circulating fluidized bed boiler. The results indicate that it is possible to enhance the boiler′s average load change rate by 16% and sustain a short-term maximum load variation rate of up to 4%/min. According to this, using a data-driven dynamic model of the thermal system, a multi-temporal matching operation technology of the thermal system incorporating innovative technologies, an advanced collaborative control system with "three self-integrated", and a reference to the established energy storage and utilization technology of pulverized coal-fired power plants, the design idea of a circulating fluidized bed unit with flexible operation at a wide range of load was provided, which offered theoretical guidance for future practical industrial applications in China.
关键词(KeyWords):
循环流化床锅炉;快速变负荷;流动惯性;传热惯性;燃烧惯性
circulating fluidized bed;quick load regulation;flow inertia;heat transfer inertia;combustion inertia
基金项目(Foundation): 国家自然科学基金面上基金资助项目(52276124)
作者(Author):
胡仙楠,邓博宇,刘欢鹏,杨冬,杨海瑞
HU Xiannan,DENG Boyu,LIU Huanpeng,YANG Dong,YANG Hairui
DOI: 10.13226/j.issn.1006-6772.SD23060101
参考文献(References):
- [1] 国家能源局.国家能源局发布2022年全国电力工业统计数据[EB/OL].(2023-01-18)[2023-05-26].http://www.nea.gov.cn/2023-01/18/c_1310691509.htm.
- [2] WANG Y,ZHAO M,CHANG J,et al.Study on the combined operation of a hydro-thermal-wind hybrid power system based on hydro-wind power compensating principles[J].Energy Conversion and Management,2019,194:94-111.
- [3] LUO G,ZHANG X,LIU S,et al.Demand for flexibility improvement of thermal power units and accommodation of wind power under the situation of high-proportion renewable integration-taking North Hebei as an example[J].Environmental Science and Pollution Research International,2019,26:7033-7047.
- [4] LI J,LIU Q.Forecasting of short-term photovoltaic power generation using combined interval type-2 Takagi-Sugeno-Kang fuzzy systems[J].International Journal of Electrical Power & Energy Systems,2022,140:108002.
- [5] 王鹏程,邓博宇,蔡晋,等.超临界循环流化床锅炉深度调峰技术难点及控制策略[J].中国电力,2021,54(5):206-212.WANG Pengcheng,DENG Boyu,CAI Jin,et al.Technical difficulties and related control strategies on in-depth peak regulation for supercritical circulating fluidized bed boiler [J].Electric Power,2021,54(5):206-212.
- [6] 中国能源报.构建新型电力系统,CCUS技术大有可为[EB/OL].(2022-10-13)[2023-05-26].https://baijiahao.baidu.com/s?id=1746527133800537430.
- [7] 中国能源报.5年要增3倍,灵活性电源比重目标该咋干?[EB/OL].(2022-04-14)[2023-05-26].https://m.in-en.com/article/html/energy-2314788.shtml.
- [8] 岳光溪,吕俊复,徐鹏,等.循环流化床燃烧发展现状及前景分析[J].中国电力,2016,49(1):1-13.YUE Guangxi,LU Junfu,XU Peng,et al.The up-to-date development and future of circulating fluidized bed combustion technology[J].Electric Power,2016,49(1):1-13.
- [9] CAI R X,ZHANG H,ZHANG M,et al.Development and application of the design principle of fluidization state specification in CFB coal combustion[J].Fuel Processing Technology,2008,174:41-52.
- [10] CAI R X,KE X W,LYU J F,et al.Progress of circulating fluidized bed combustion technology in China:A review[J].Clean Energy,2017,1(1):36-49.
- [11] 王迪.火电机组建模及快速变负荷控制[D].吉林:东北电力大学,2018.
- [12] 于浩洋,高明明,张缦,等.循环流化床机组深度调峰性能分析与评价[J].热力发电,2020,49(5):65-72.YU Haoyang,GAO Mingming,ZHANG Man,et al.Performance analysis and evaluation of deep peak-regulating for circulating fluidized bed units[J].Thermal Power Generation,2020,49(5):65-72.
- [13] 蔡晋,单露,王志宁,等.超临界 350 MW 循环流化床锅炉变负荷特性[J].热力发电,2020,49(9):98-103.CAI Jin,SHAN Lu,WANG Zhining,et al.Variable load characteristics of a supercritical 350 MW circulating fluidized bed boiler[J].Thermal Power Generation,2020,49(9):98-103.
- [14] LOCKWOOD T.Techno-economic analysis of PC versus CFB combustion technology[M].London:IEA Clean Coal Centre,2013.
- [15] LIU J Z,WANG Q H,SONG Z Q,et al.Bottlenecks and countermeasures of high-penetration renewable energy development in China[J].Engineering,2020,7(11):1611-1622.
- [16] ALOBAID F,MERTENS N,STARKLOFF R,et al.Progress in dynamic simulation of thermal power plants[J].Progress in Energy and Combustion Science,2017,59:79-162.
- [17] AMROUCHE S O,REKIOUA D,REKIOUA T,et al.Overview of energy storage in renewable energy systems[J].InternationalJournal of Hydrogen Energy,2016,41(45):20914-20927.
- [18] FARAJI F,MAJAZI A,AL-HADDAD K.A comprehensive review of flywheel energy storage system technology[J].Renewable and Sustainable Energy Reviews,2017,67:477-490.
- [19] ARIAS B.An analysis of the operation of a flexible oxy-fired CFB power plant integrated with a thermal energy storage system[J].International Journal of Greenhouse Gas Control,2016,45:172-180.
- [20] ARIAS B,CRIADO Y A,SANCHEZ-BIEZMA A,et al.Oxy-fired fluidized bed combustors with a flexible power output using circulating solids for thermal energy storage[J].Applied Energy,2014,132:127-136.
- [21] STEFANITSIS D,NESIADIS A,KOUTITA K.Simulation of a CFB boiler integrated with a thermal energy storage system during transient operation[J].Frontiers in Energy Research,2020,8:1-14.
- [22] GAO M,HONG F,LIU J,et al.Investigation on the energy conversion and load control of supercritical circulating fluidized bed boiler units[J].Journal of Process Control,2018,68:14-22.
- [23] 侯益铭,王智微,王晋权.超临界循环流化床机组负荷快速响应的协调控制优化[J].热力发电,2019,48(10):33-37.HOU Yiming,WANG Zhiwei,WANG Jinquan.Optimization of coordinated control for rapid response to electric power in supercritical CFB unit[J].Thermal Power Generation,2019,48(10):33-37.
- [24] WANG L,YANG D,SHEN Z,et al.Thermal–hydraulic calculation and analysis of a 600 MW supercritical circulating fluidized bed boiler with annular furnace[J].Applied Thermal Engineering,2016,95:42-52.
- [25] DENG B Y,ZHANG M,SHAN L,et al.Modeling study on the dynamic characteristics in the full-loop of a 350 MW supercritical CFB boiler under load regulation[J].Journal of the Energy Institute,2021,97:117-130.
- [26] CASTILLA G M,MONTA?éS R M,PALLARèS D,et al.Comparison of the transient behaviors of bubbling and circulating fluidized bed combustors[J].Heat Transfer Engineering,2023,44(4):303-316.
- [27] CASTILLA G M,MONTA?éS R M,PALLARES D,et al.Dynamics and control of large-scale fluidized bed plants for renewable heat and power generation[J].Applied Thermal Engineering,2023,219:119591.
- [28] 吴川林.循环流化床锅炉的发展及耐磨耐火材料的应用[J].电力建设,2002(10):14-17.WU Chuanlin.Development of CFB boiler and application of wearproof and refractory materials[J].Electric Power Construction,2002(10):14-17.
- [29] HONG F,CHEN J,WANG R,ed al.Realization and performance evaluation for long-term low-load operation of a CFB boiler unit[J].Energy,2021,214:118877.
- [30] 杨海瑞,薛雷,郭远熊,等.循环流化床锅炉燃煤着火特性[J].燃烧科学与技术,2005,11(3):236-240.YANG Hairui,XUE Lei,GUO Yuanxiong,et al.Ignitioncharacteristic of coal in CFB boiler[J].Journal of Combustion Science and Technology,2005,11(3):236-240.
- [31] BURSI J M,LAFANECHéRE L,JESTIN L.Basic design studies for a 600 MWe CFB boiler[J].VGB Power Tech,2000,80(2):35-44.
- [32] BOURE J,BERGLES A,TONG L.Review of two-phase flow instability[J].Nuclear Engineering and Design,1973,25(2):165-192.
- [33] 姜胜耀,张佑杰,吴莘馨.自然循环静态流量漂移诱发动态流量振荡研究[J].清华大学学报(自然科学版),2000,40(2):63-66.JIANG Shengyao,ZHANG Youjie,WU Xinxin.Static flow instability induced dynamic flow oscillation in natural circulation[J].Journal of Tsinghua University(Science and Technology),2000,40(2):63-66.
- [34] 陈听宽,荆建刚,罗毓珊.并联管两相流不稳定性的研究[J].工程热物理学报,2002,23(1):99-102.CHEN Tingkuan,JING Jiangang,LUO Yushan.An investigation of the two-phase flow instability in parallel pipes [J].Journal of Engineering Thermophysics,2002,23(1):99-102.
- [35] 郭赟,苏光辉,田文喜,等.中国先进研究堆自然循环两相流动不稳定性分析[J].原子能科学技术,2006,40(2):228-234.GUO Yun,SU Guanghui,TIAN Wenxi,et al.Two-phase instability analysis in natural circulation loops of China advanced research reactor[J].Atomic Energy Science and Technology,2006,40(2):228-234.
- [36] 朱莎弘.循环流化床锅炉机组热力系统优化及响应特性研究[D].北京:清华大学,2022.
- [37] CASTILLA G M.Dynamics of large-scale fluidized bed com-bustion plants[D].Sweden:Chalmers Tekniska Hogskola,2021.
- [38] YANG H R,YUE G X,XIAO X B,et al.1D modeling on the material balance in CFB boiler[J].Chemical Engineering Science,2005,60(20):5603-5611.
- [39] LU J F,ZHANG J S,YUE G X,et al.Method of calculation of heat transfer coefficient of the heater in a circulating fluidized bed furnace[J].Heat Transfer-Asian Research,2002,31:540-550.
- [40] YANG H R,ZHANG H,YANG S,et al.Effect of bed pressure drop on performance of a CFB boiler[J].Energy & Fuels,2009,23:2886-2890.
- [41] 吕俊复.超临界循环流化床锅炉水冷壁热负荷及水动力研究[D].北京:清华大学,2005.
- [42] 陈瑜锐,张缦,单露,等.一种快速变负荷循环流化床锅炉:CN208920042U[P].2019-05-31.
- [43] 冯玉鹏,张缦,邓博宇,等.一种循环灰储热系统及其优化深度调峰的方法:CN112944332A[P].2021-06-11.
- [44] 杨海瑞,刘上中,刘骥翔,等.一种全回路金属格栅防磨结构的CFB锅炉:CN114046496A[P].2022-02-15.
- [45] 吕俊复,佟博恒,董建勋,等.循环流化床内煤矸石一维燃烧模型[J].煤炭学报,2016,41(10):2418-2425.LU Junfu,TONG Boheng,DONG Jianxun,et al.one-dimensional model of coal gangue combustion in circulating fluidized bed boiler [J].Journal of China Coal Society,2016,41(10):2418-2425.
- [46] K?K M V,?ZBAS E,KARACAN O,et al.Effect of particle size on coal pyrolysis[J].Journal of Analytical and Applied Pyrolysis,1998,45(2):103-110.
- [47] ADANEZ J,ABANADES J C,DE DIEGO L F.Determination of coal combustion reactivities by burnout time measurements in a batch fluidized bed[J].Fuel,1994,73(2):287-293.
- [48] 吕俊复,尚曼霞,柯希玮,等.粉煤循环流化床燃烧技术[J].煤炭学报,2023,48(1):430-437.LYU Junfu,SHANG Manxia,KE Xiwei,et al.Powered coal circulating fluidized bed combustion technology[J].Journal of China Coal Society,2023,48(1):430-437.
- [49] 陈俊,马素霞,刘众元,等.循环流化床低热值煤—高热值煤粉动态复合燃烧污染物排放特性[J].热能动力工程,2018,33(10):60-66.CHEN Jun,MA Suxia,LIU Zhongyuan,et al.Study on the pollutant emission characteristic under the dynamic compound combustion of low calorific coal-high calorific pulverized coal[J].Journal of Engineering for Thermal Energy and Power,2018,33(10):60-66.
- [50] 潘雄峰,马素霞,陈俊,等.循环流化床低热值煤-高热值煤粉动态复合燃烧试验研究[J].动力工程学报,2018,38(6):447-451,471.PAN Xiongfeng,MA Suxia,CHEN Jun,et al.Dynamic co-combustion experiments with low calorific raw coal and high calorific pulverized coal in a CFB boiler[J].Journal of Chinese Society of Power Engineering,2018,38(6):447-451,471.
- [51] LIU Z,MA S,PAN X,et al.Experimental study on the load response rate under the dynamic combined combustion of PC coal and CFB coal in a CFB boiler[J].Fuel,2019,236:445-451.
- [52] CHAI W S,BAO Y,JIN P,et al.A review on ammonia,ammonia-hydrogen and ammonia-methane fuels[J].Renewable and Sustainable Energy Reviews,2021,147:111254.
- [53] XIA Y,HADI K,HASHIMOTO G,et al.Effect of ammonia/oxygen/nitrogen equivalence ratio on spherical turbulent flame propagation of pulverized coal/ammonia co-combustion[J].Proceedings of the Combustion Institute,2021,38(3):4043-4052.
- [54] HADI K,ICHIMURA R,HASHIMOTO G,et al.Effect of fuel ratio of coal on the turbulent flame speed of ammonia/coal particle cloud co-combustion at atmospheric pressure[J].Proceedings of the Combustion Institute,2021,38(3):4131-4139.
- [55] YOSHIZAKI T.Test of the co-firing of ammonia and coal at Mizushima power station[J].Journal of the Combustion Society of Japan,2019,61:309-312.
- [56] 邓拓宇.供热机组储能特性分析与快速变负荷控制[D].北京:华北电力大学,2016.
- [57] ?STR?M K J,EKLUND K.A simplified non-linear model of a drum boiler-turbine unit[J].International Journal of Control,1972,16(1):145-169.
- [58] DE MELLO F P.Boiler models for system dynamic performance studies[J].IEEE Transactions on Power systems,1991,6(1):66-74.
- [59] 田亮,曾德良,刘吉臻,等.简化的330 MW机组非线性动态模型[J].中国电机工程学报,2004,24(8):183-187.TIAN Liang,ZENG Deliang,LIU Jizhen,et al.A simplified non-linear dynamic model of 330 MW Unit[J].Proceedings of the CSEE,2004,24(8):183-187.
- [60] 刘吉臻,洪烽,高明明,等.循环流化床机组快速变负荷运行控制策略研究[J].中国电机工程学报,2017,37(14):4130-4137,4292.LIU Jizhen,HONG Feng,GAO Mingming,et al.Research on thecontrol strategy for quick load change of circulating fluidized bed boiler units[J].Proceedings of the CSEE,2017,37(14):4130-4137,4292.
- [61] 高明明,刘吉臻,牛玉广,等.基于EKF技术的CFB锅炉残碳量估计[J].热能动力工程,2013,28(5):492-496,552-553.GAO Mingming,LIU Jizhen,NIU Yuguang,et al.Application of the Extended Kalman Filtering technology in the estimation of the residual carbon content of a CFB boiler[J].Journal of Engineering for Thermal Energy and Power,2013,28(5):492-496,552-553.
- [62] GAO M,HONG F,LIU J.Investigation on energy storage and quick load change control of subcritical circulating fluidized bed boiler units[J].Applied Energy,2017,185:463-471.
- [63] 刘吉臻,王耀函,曾德良,等.基于凝结水节流的火电机组AGC控制优化方法[J].中国电机工程学报,2017,37(23):6918-6925,7082.LIU Jizhen,WANG Yaohan,ZENG Deliang,et al.An AGC control method of thermal unit based on condensate throttling[J].Proceedings of the CSEE,2017,37(23):6918-6925,7082.
- 循环流化床锅炉
- 快速变负荷
- 流动惯性
- 传热惯性
- 燃烧惯性
circulating fluidized bed - quick load regulation
- flow inertia
- heat transfer inertia
- combustion inertia