水煤浆热解及煤焦结构特性分析Analysis of coal water slurry pyrolysis and coal char structure characteristics
王旭阳,于洁,徐林林,孙路石
WANG Xuyang,YU Jie,XU Linlin,SUN Lushi
摘要(Abstract):
为了研究水煤浆的浓度与热解温度对热解气生成以及煤焦结构的变化规律,对内蒙古烟煤原煤及不同浓度水煤浆(55%、60%和65%)在不同温度下(800、900和1 000℃)快速热解,考察了不同的热解气生成量随热解温度和水煤浆浓度的变化,并利用XRD和Raman分析了热解后煤焦结构随热解温度和水煤浆浓度的变化规律。结果表明,在水煤浆浓度不变的情况下,随着热解温度升高,CO、CH_4、CO_2、H_2、HCN和NH_3的生成量均逐渐升高,且HCN生成量远高于NH_3生成量;在温度不变的情况下,随水煤浆浓度升高(水含量降低),CO和CH_4生成量均逐渐增加,而CO_2、H_2、HCN和NH_3的生成量均逐渐降低。XRD结果表明,随热解温度升高和水煤浆中水含量增加,煤焦的晶面间距d_(002)逐渐减小,堆垛高度L_c逐渐增大。Raman结果表明,随热解温度升高和水煤浆中水含量增加,煤焦的A_(D1)/A_G和A_(D3)/A_G逐渐减小,A_G/A_(all)逐渐增大。表明煤焦中碳微晶结构有序化程度随热解温度升高和水含量的增加而逐渐增加,煤焦石墨化程度升高。XRD与Raman关联可得在水煤浆热解过程中,随热解温度和水煤浆浓度的变化,d_(002)与A_(D1)/A_G变化、L_c与A_G/A_(all)变化均呈正相关。
In order to study the effect of coal water slurry(CWS) concentration and pyrolysis temperature on the formation of pyrolysis gas and the structure of coal char,the rapid pyrolysis of Inner Mongolia bituminous coal and coal water slurry with different concentrations(55%,60%and 65%) was tested at different temperatures(800,900 and 1 000℃),the change law of pyrolysis gas of coal water slurry with pyrolysis temperature and coal water slurry concentration was investigated,and the microcrystalline structure changes of coal char after pyrolysis of coal water slurry and coal powder were analyzed by XRD and Raman.The results show that under the constant concentration of coal water slurry,the production of CO,CH_4,CO_2,H_2,HCN and NH_3 gradually increases with the increase of temperature,and the production of HCN is much higher than that of NH_3.At a constant temperature,with the increase of the raw coal concentration in the coal water slurry,the production of CO and CH_4 gradually increases,while the production of CO_2,H_2,HCN and NH_3 gradually decreases.The results of XRD show that with the increase of pyrolysis temperature and the increase of water content in coal water slurry,the d_(002)of coal char of coal water slurry gradually decreases,and the L_cgradually increases.The results of Raman show that with the increase of pyrolysis temperature and the increase of water concentration,A_(D1)/A_G and A_(D3)/A_G gradually decrease,while A_G/A_(all)gradually increases.These show that the degree of ordering of the carbon microcrystal structure in coal char gradually increases with the increase of pyrolysis temperature and water concentration,and the graphitization degree of coal char increases.The correlation analysis between Raman and XRD shows that during the pyrolysis of coal water slurry,d_(002) is positively correlated with A_(D1)/A_G and L_c is positively correlated with A_G/A_(all)with the change of pyrolysis temperature and coal water slurry concentration.
关键词(KeyWords):
水煤浆;快速热解;热解气;煤焦结构;XRD;Raman
coal water slurry;fast pyrolysis;pyrolysis gas;coal char structure;XRD;Raman
基金项目(Foundation): 国家重点研发计划资助项目(2018YFB0604202-01)
作者(Author):
王旭阳,于洁,徐林林,孙路石
WANG Xuyang,YU Jie,XU Linlin,SUN Lushi
DOI: 10.13226/j.issn.1006-6772.20080701
参考文献(References):
- [1]赵珊.中国煤炭资源现状及建议[J].广州化工,2014,42(15):52-53.ZHAO Shan.The status and suggestions of coal resources in China[J].Guangzhou Chemical Industry,2014,42(15):52-53.
- [2]丁东成,李英.水煤浆工业锅炉的市场前景及炉型选择[J].工业锅炉,2003(2):9-12.DING Dongcheng,LI Ying.The market forecast and the selection of type for CWS-fired industrial boiler[J].Industrial boiler,2003(2):9-12.
- [3]游小波,张传名,彭国伟.水煤浆在电站锅炉及工业锅炉上的应用前景[J].煤质技术,2007(4):35-38.YOU Xiaobo,ZHANG Chuanming,PENG Guowei.The application prospect of coal water slurry in electric and industrial boiler[J].Coal Technology,2007(4):35-38.
- [4]梁兴,何国锋,王秀月,等.水煤浆在工业窑炉中的应用现状及发展[J].煤炭科学技术,2006,34(8):80-83.LIANG Xing,HE Guofeng,WANG Xiuyue,et al.Application status and development of coal water mixture to industrial oven and boiler[J].Coal Science and Technology,2006,34(8):80-83.
- [5]阮红柱.德士古水煤浆气化技术特点[J].煤化工与甲醇,2019,45(8):17-18.RUAN Hongzhu.Characteristic of texaco coal water slurry gasification technology[J].Coal Chemical Methanol,2019,45 (8):17-18.
- [6]蒋甲金,宋羽,路文学,等.多喷嘴对置式水煤浆气化技术及其优越性[J].化学工程与装备,2011(2):108-109.JIANG Jiajin,SONG Yu,LU Wenxue,et al.multi-nozzle opposed coal water slurry gasification technology and its superiority[J].Chemical Engineering&Equipment,2011(2):108-109.
- [7]CHEN L,ZENG C,GUO X,et al.Gas evolution kinetics of two coal samples during rapid pyrolysis[J].Fuel Processing Technology,2010,91(8):848-852.
- [8]LI X J,HAYASHI J,LI C Z.FT-Raman spectroscopic study of the evolution of char structure during the rapid pyrolysis of a victorian brown coal[J].Fuel,2006,85(12/13):1700-1707.
- [9]BUTUZOVA L,RAZVIGOROVA M,KRZTON A,et al.The effect of water on the yield and structure of the products of brown coal pyrolysis and hydrogenation[J].Fuel,1998,77:639-643.
- [10]WANG H,JIANG X M,LIU H,et al.Fast pyrolysis comparison of coal-water slurry with its parent coal in Curie-Point pyrolyser[J].Energy Conversion and Management,2009,50 (8):1976-1980.
- [11]孟德润,周俊虎,岑可法,等.水煤浆热解过程中HCN和NH3释放特性的分析[J].热能动力工程,2006,21(4):394-396.MENG Derun,ZHOU Junhu,CEN Kefa,et al.An Analysis of HCN and NH3release characteristics of coal-water slurry in its pyrolysis process[J].Journal of Engineering for Thermal Energy and Power,2006,21(4):394-396.
- [12]SHENG C D.Char structure characterised by Raman spectroscopy and its correlations with combustion reacti-vity[J].Fuel,2007,86(15):2316-2324.
- [13]LU L M,SAHAJWALLA V,HARRIS D.Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace[J].Energy&Fuels,2000,14 (4):869-876.
- [14]DING L,DAI Z H,GUO Q H,et al.Effects of in-situ interactions between steam and coal on pyrolysis and gasification characteristics of pulverized coals and coal water slurry[J].Applied Energy 2017,187:627-639.
- [15]KOZLOWSKIM.XPS study of reductively and non-reductively modified coals[J].Fuel,2004,83(3):259-265.
- [16]KAPTEIJN F,MOULIJN J A,MATZNER S,et al.The development of nitrogen functionality in model chars during gasification in CO2and O2[J].Carbon,1999,37:1143-1150.
- [17]RAYMUNDO-PIERO E,CAZORLA-AMORS D,LINARES-SO-LANO A,et al.Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin[J].Carbon,2002,40(4):597-608.
- [18]段春雷.低中变质程度煤的结构特征及热解过程中甲烷、氢气的生成机理[D].太原:太原理工大学,2007:3-6.DUAN Chunlei.Structural characteristics of low-middle rank coals and generation mechanisms of methane and hydrogen during pyrolysis[D].Taiyuan:Taiyuan University of Technology,2007:3-6.
- [19]李美芬,曾凡桂,贾建波,等.三种高变质程度煤热解过程中H2的逸岀特征研究[J].燃料化学学报,2007,35(2):237-240.LI Meifen,ZENG Fangui,JIA Jianbo,et al.TG/MS study on evolution characteristics of hydrogen from pyrolysis of three high rank coals[J].Journal of Fuel Chemistry and Technology,2007,35(2):237-240.
- [20]刘源,贺新福,杨伏生,等.热解温度及气氛变化对神府煤热解产物分布的影响[J].煤炭学报,2015,40(S2):497-504.LIU Yuan,HE Xinfu,YANG Fusheng,et al.Impacts of pyrolysis temperature and atmosphere on product distribution of Shenfu coal pyrolysis[J].Journal of China Coal Society,2015,40 (S2):497-504.
- [21]DONG Q,ZHANG H X,ZHU Z P.Evolution of structure properties during Zhundongcoal pyrolysis[J].Procedia Engineering,2015,102:4-13.
- [22]王冠宇,张建胜,刘臻,等.褐煤水煤浆气化分析[J].煤炭技术,2014,33(7):230-232.WANG Guanyu,ZHANG Jiansheng,LIU Zhen,et al.Water coal slurry gasification of lignite[J].Coal Technology,2014,33(7):230-232.
- [23]YU L E,HILDEMANN L M,DADAMIO J,et al.Chara-cterization of coal tar organics via gravity flow column chromatography[J].Fuel,1998,77(5):437-445.
- [24]GARCI A X A,ALARCN N A,GORDON A L.Steam gasification of tarsusing a CaO catalyst[J].Fuel Processing Technology,1999,58(2/3):83-102.
- [25]李燕.煤的部分裂解气化反应技术基础研究[D].杭州:浙江大学,2015:88-92.LI Yan.Basic research of part pyrolysis and gasification technology based on coal[D].Hangzhou:Zhejiang University,2015:88-92.
- [26]SATRIO J,SHANKS B H,WHEELOCK T D.A combined catalyst and sorbent for enhancing hydrogen production from coal or biomass[J].Energy&Fuel,2007,21(1):322-326.
- [27]HARRISON D P.Sorption-Enhanced hydrogen produc-tion:Areview[J].Industrial&Engineering Chemistry Research,2008,47(17):6486-6501.
- [28]万子岸,高飞,周华群,等.甲烷水蒸汽重整反应制氢催化剂的研究进展[J].现代化工,2016,36(5):48-52.WAN Zian,GAO Fei,ZHOU Huaqun,et al.Research progress of catalysts for hydrogen production via methane steam reforming[J].Modern Chemical Industry,2016,36(5):48-52.
- [29]WANG J,SAKANISHI K,SAITO I.High-yield hydro-gen production by steam gasification of hypercoal(ash-free coal extract)with potassium carbonate:Comparison with raw coal[J].Energy&Fuels,2005,19(5):2114-2120.
- [30]WANG J,JIANG M Q,YAO Y H,et al.Steam gasification of coal char catalyzed by K2CO3for enhanced production of hydrogen without formation of methane[J].Fuel,2009,88 (9):1572-1579.
- [31]常丽萍.煤热解、气化过程中含氮化合物的生成与释放研究[D].太原:太原理工大学,2004:71-72.CHANG Liping.Study on the formation and release of nitrogen-containing compounds during coal pyrolysis and gasification[D].Taiyuan:Taiyuan University of Technology,2004:71-72.
- [32]WU Zhiheng,OHTSUKA Yasuo.Nitrogen distribution in a fixed bed pyrolysis of coals with different ranks:formation and source of N2[J].Energy&Fuels,1997,11:477-482.
- [33]刘佳,郭欣,郑楚光.煤中吡咯与吡啶类氮热解的分子动力学模拟[J].燃烧科学与技术,2015,21(4):357-362.LIU Jia,GUO Xin,ZHENG Chuguang.Molecular dynamics simulation for pyrolysis of pyrrole and pyridine compounds in coal[J].Journal of Combustion Science and Technology,2015,21(4):357-362.
- [34]MACKIE J C,COLKET M B,NELSON P F.Shock tube pyrolysis of pyrrole and kinetic modeling[J].International Journal of Chemical Kinetics,1991,23(8):733-760.
- [35]AXWORTHY A E,DAYAN V H,MARTIN G B.Reactions of fuel-nitrogen compounds under conditions of inert pyrolysis[J].Fuel,1978,57(1):29-35.
- [36]LI W,ZHU Y M.Structural characteristics of coal vitrinite during pyrolysis[J].Energy&Fuels,2014,28(6):3645-3654.
- [37]田承圣,曾凡桂.镜煤与丝炭结构的X射线衍射初步分析[J].太原理工大学学报,2001,32(2):102-105.TIAN Chengsheng,ZENG Fangui.Analysis of structure between vitrain and fusain X-ray diffraction analysis[J].Journal of Taiyuan University of Technology,2001,32(2):102-105.
- [38]赵冰,周志杰,于广锁,等.快速热处理石油焦与煤的微观结构变化及气化活性分析[J].燃料化学学报,2013,41 (1):40-45.ZHAO Bing,ZHOU Zhijie,YU Guangsuo,et al.Changes in the microstructure and gasification reactivity of petroleum coke and coal samples after rapid pyrolysis[J].Journal of Fuel Chemistry and Technology,2013,41(1):40-45.
- [39]常海洲,蔡雪梅,吕秀清,等.不同还原程度煤显微组分堆垛结构表征[J].山西大学学报,2008,31(2):223-227.CHANG Haizhou,CAI Xuemei,LYU Xiuqing,et al.Characterization for the stacking structure of coal macerals with different type reductivity[J].Journal of Shanxi University,2008,31 (2):223-227.
- [40]CAI H Y,MEGARITIS A,MESSENBCK R,et al.Pyrolysis of coal maceral concentrates under pfcombus-tion conditions(I):Changes in volatile release and char combustibility as a function of rank[J].Fuel,1998,77(12):1273-1282.
- [41]陈旺,焦娜,徐樑华,等.碳纤维在石墨化处理过程中的sp2结构转变[J].宇航材料工艺,2013(5):46-48.CHEN Wang,JIAO Na,XU Lianghua,et al.Transition of sp2Hybridization structure during graphitization of carbon fiber[J].Aerospace Materials Technology,2013(5):46-48.
- [42]MALLET-LADEIRA P,PUECH P,TOULOUSE C,et al.ARaman study to obtain crystallite size of carbon materials:Abetter alternative to the Tuinstra-Koenig law[J].Carbon,2014,80:629-639.
- [43]SADEZKY A,MUCKENHUBER H,GROTHE H,et al.Raman microspectroscopy of soot and related carbon-aceous materials:Spectral analysis and structural information[J].Carbon,2005,43(8):1731-1742.
- [44]JIANG JY,YANG W H,CHENG Y P,et al.Molecular structure characterization of middle-high rank coal via XRD,Raman and FTIR spectroscopy:Implications for coalification[J].Fuel,2019,239:559-572.
- [45]JONES S P,FAIN C C,EDIE D D.Structural development in mesophase pitch based carbon fibers produced from naphthalene[J].Carbon,1997,35(10/11):1533-1543.
- [46]JAWHARI T,ROID A,CASADO J.Raman spectroscopic characterization of some commercially available carbon black materials[J].Carbon,1995,33(11):1561-1565.
- [47]ZAIDA A,BAR-ZIV E,RADOVIC L R,et al.Further development of Raman Microprobe spectroscopy for characterization of char reactivity[J].Proceedings of the Combustion Institute,2007,31(2):1881-1887.
- [48]张小蕊,邹冲,赵俊学,等.XRD和Raman法评估热解气氛中H2和CO对半焦化学结构的影响.[J]燃料化学学报,2019,47(11):1288-1297.ZHANG Xiaorui,ZOU Chong,ZHAO Junxue,et al.Effect of H2and CO as pyrolysis atmosphere on chemical structure of char by XRD and Raman methods[J].Journal of Fuel Chemistry and Technology,2019,47(11):1288-1297.