光催化CO2转化研究综述
Review on photocatalytic CO2 reduction reaction
佟振伟,钟振成
TONG Zhenwei,ZHONG Zhencheng
摘要(Abstract):
以获得具有经济价值的能源或化学品为目标的CO_2化学转化,可实现CO_2的资源化循环利用,是解决我国碳排放问题、实现碳中和目标的潜在路径。光催化技术相比传统的热催化,具有能耗低、反应条件温和等优势,是实现CO_2能源化利用的理想方式之一。然而由于CO_2极其稳定,导致反应转化率低。光催化CO_2转化反应的核心是通过设计催化剂和反应体系,尽可能提高光催化剂的催化活性,进而提高CO_2还原产物的选择性和产率。基于现阶段对光催化CO_2转化技术需求的紧迫性,及时全面了解近几年该领域的研究进展有助于合理分析未来研究方向。主要从光催化还原CO_2反应技术优势、反应机理、催化剂种类和最新研究成果等方面综述了光催化CO_2转化利用的研究进展。详细阐述了光催化体系的组成、CO_2得电子的还原过程和目前CO_2光催化转化产物产量规模及影响产物选择性的因素,重点探讨提高光催化反应转化率的策略,包括引入贵金属助催化剂、构建异质结结构、挖掘新型光催化剂、构建促进电子传递通道和电/热催化与光催化的耦合等。结果表明,上述策略均可不同程度提高CO_2转化反应的转化率,还原产物种类也从C_1产物逐渐发展到C_2产物,其中光电/光热催化相较于单独光催化具有更高的转化率,这使得光催化CO_2转化技术在未来应用的可能性得以提升。此外,指出了当前光催化CO_2能源化利用方面存在的不足,如转化效率低、产物选择性差和无法实现高附加值产物的可控合成等,对光催化实现CO_2能源化利用的研究重点,即高效光催化剂的开发、催化过程动力学反应机理进行了展望。
Aimed at obtaining economically valuable fuels or chemicals, the chemical conversion of CO_2 provides a renewable utilization route for CO_2,which is one of the most promising alternatives to solve current carbon emission issue and achieve CO_2 neutrality. Compared with traditional thermocatalysis, photocatalytic technology has the advantages of low energy consumption and mild reaction conditions, and is one of the ideal solutions to realize the energy utilization of CO_2. However, owing to the chemical stability of CO_2,the conversion reactions that convert CO_2 are relatively low. The research core of photocatalytic CO_2 reduction is to improve the catalytic activity of photocatalysts through the design of catalyst and reaction system so as to improve the selectivity and controllability of the CO_2 reduction products. Due to the urgency of photocatalytic CO_2 conversion technology at the present stage, a timely and comprehensive understanding of the research progress in this field in recent years is helpful to reasonably analyze the possible research direction in the next stage. The research progress of photocatalytic CO_2 reduction was reviewed from the advantages of photocatalysis, reaction mechanism, catalysts and the latest research results. The composition of the photocatalysis system, the electron reduction process of CO_2,and the current products of CO_2 photocatalytic conversion, yield, scale and factors affecting the selectivity of products were described in detail. The strategies to improve the reduction performance were mainly elaborated, including the introduction of noble metals co-catalysts, the construction of heterojunction structure, exploring new photocatalysts, the construction of electron transport channel and coupling of electric or thermal catalysis with photocatalysis, etc. The results show that the above strategies can improve the conversion rate of CO_2 reduction reaction in varying degrees, and the types of reduction products gradually develop from C_1 to C_2. Notably, photoelectric/photothermal catalysis has a higher conversion rate than photocatalysis alone, which improves the possibility of future application of this technology and deserves much research and attention. In addition, it is pointed out that the current photocatalytic reduction of CO_2 has problems of insufficient conversion efficiency, poor product selectivity, and unable to achieve controllable synthesis of high value-added products, etc. Future research should focus on the development of high-efficiency photocatalysts and the catalytic kinetics.
关键词(KeyWords):
CO_2还原;光催化;光催化剂;选择性;CO产率;光热还原
CO_2 reduction;photocatalysis;photocatalyst;selectivity;CO yield;photothermal reduction
基金项目(Foundation): 国家能源集团科技创新资助项目(KJ9300000562)
作者(Author):
佟振伟,钟振成
TONG Zhenwei,ZHONG Zhencheng
DOI: 10.13226/j.issn.1006-6772.21062102
参考文献(References):
- [1] OSCHATZ M,ANTONIETTI M .A search for selectivity to enable CO2 capture with porous adsorbents[J].Energy & Environmental Science,2018,1(11):57-70.
- [2] GURWINDER Singh,KRIPAL S Lakhi,SANCHITA Sil,et al.Biomass derived porous carbon for CO2 capture[J].Carbon,2019,148:164-186.
- [3] JOERI Rogelj,DREW Shindell,JIANG Kejun,et al.IPCC special report on impacts of global warming of 1.5 ℃[R].MOROCCO:IPCC,2019.
- [4] 王冰,赵美明,邹志刚.光催化还原二氧化碳制备太阳燃料研究进展及挑战[J].中国科学:技术科学,2017,47(3):286-296.WANG Bing,ZHAO Meiming,ZOU Zhigang.Recent progress and challenge in research of photocatalytic reduction of CO2 to solar fuels[J].Science Sinica Technologica,2017,47(3):286-296.
- [5] HALMAXIN M.Photoelectrochemical reduction of aqueous carbon dioxide on P-type gallium phosphide in liquid junction solar cells[J].Nature,1978,275:115-116.
- [6] 王欢,李鹏艳,韩炳旭.新型光催化还原CO2材料的研究进展[J].山东化工,2020,49(7):77-78.WANG Huan,LI Pengyan,HAN Bingxu.Progress of new photocatalyticreduction of CO2 materials[J].Shandong Chemical Industry,2020,49(7):77-78.
- [7] TONG Zhenwei,YANG Dong,SHI Jiafu,et al.Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-iight photocatalytic performance[J].ACS Applied Materials Interfaces,2015,7(46):25693-25701.
- [8] 高小雅,李旭兵,佟振合,等.量子点人工光合成化学转换研究进展[J].化学通报,2021,84(1):10-15.GAO Xiaoya,LI Xubing,TONG Zhenhe,et al.Recent advances in quantum dots based artificial photosynthesis[J].Chemistry,2021,84(1):10-15.
- [9] WANG H,ZHANG L,CHEN Z,et al.Semiconductor heterojunct-ion photocatalysts:Design,construction,and photocatalytic performances[J].Chemical Society Reviews,2014,43(15):5234-5244.
- [10] TONG Zhenwei,YANG Dong,LI Zhen,et al.Thylakoid-inspiredmultishell g-C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis [J].ACS Nano,2017,11(1):1103-1112.
- [11] FU Junwei,JIANG Kexin,QIU Xiaoqing et al.Product selectivity of photocatalytic CO2 reduction reactions[J].Materials Today,2020,32,222-243.
- [12] 封啸,任颜卫,江焕峰.金属-有机框架材料在光催化二氧化碳还原中的应用[J].化学进展,2020,32(11):1697-1709.FENG Xiao,REN Yanwei,JIANG Huanfeng.Application of metal-organic framewrok materials in the photocatalytic carbon dioxide reduction[J].Progress in Chemistry,2020,32(11):1697-1709.
- [13] 丁春梅,姚婷婷,李灿.光电催化分解水和还原CO2研究进展[J].科技导报,2020,38(23):75-84.DING Chunmei,YAO Tingting,LI Can.Progress of photoelectrocatalytic water splitting and CO2 reduction[J].Science & Technology Review,2020,38(23):75-84.
- [14] LI Rui,ZHANG Wang,ZHOU Kun,et al.Metal-organic-framework-based catalysts for photoreduction of CO2[J].Advanced Materials,2018,30(35):1705512.
- [15] PENG Chao,REID Glenn,WANG Haifeng,et al.Perspective:Photocatalytic reduction of CO2 to solar fuels over semiconductors[J].Journal of Chemical Physics,2017,147(3):030901.
- [16] CHANG Xiaoxia,WANG Tuo,GONG Jinlong.CO2 photo-reduction:Insights into CO2 activation and reaction on surfaces of photocatalysts[J].Energy & Environmental Science,2016,9(7):2177-2196.
- [17] ZHENG Yun,ZHANG Wenqiang,LI Yifeng,et al.Energy related CO2 conversion and utilization:Advanced materials/nanomaterials reaction mechanisms and technologies[J].Nano Energy,2017,40:512-539.
- [18] SAURAV Sorcar,JAMIE Thompson,HWANG Yunju,et al.High-rate solar-light photoconversion of CO2 to fuel:Controllable transformation from C1 to C2 products[J].Energy & Environmental Science,2018,11:3183-3193.
- [19] XIE Shunji,WANG Yu,ZHANG Qinghong,et al.MgO and Pt promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water[J].ACS Catalysis,2014,4(10):3644-3653.
- [20] ANTHONYVASILEFF,XU Chaochen,JIAO Yan.Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction[J].Chem,2018,4(8):1809-1831.
- [21] FREUND H J,ROBERTS M W.Surface chemistry of carbon dioxide[J].Surface Science Reports,1996,25,225-273.
- [22] NGUYEN Ha L.Reticular materials for artificial photoreduction of CO2[J].Advanced Energy Materials,2020,10(46):2002091.
- [23] XIE Shunji,ZHANG Qinghong,LI Guodong,et al.Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures[J].Chemical Communications,2016,52(1):35-59.
- [24] WA Thompson,ESANCHEZ Fernandez,MM Maroto-Valer.Revi-ew and analysis of CO2 photoreduction kinetics[J].ACS Sustainable Chemistry & Engineering,2020,8(12):4677-4692.
- [25] INOUE T,FUJISHIMA A,KONISHI S,et al.Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J].Nature,1979,277:637-638.
- [26] VIJAYAN B,DIMITRIJEVIC N M,RAJH T,et al.Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes[J].Journal of Physical Chemistry C,2010,114(30):12994-13002.
- [27] KOCíK,OBALOVáL,MAT?JOVá L,et al.Effect of TiO2 particle size on the photocatalytic reduction of CO2[J].Applied Catalysis B Environmental,2009,89(3/4):494-502.
- [28] DONG Guohui,ZHANG Lizhi.Porous structure dependent photoreactivity of graphitic carbon nitride under visible light[J].Journal of Materials Chemistry,2012,22(3):1160-1166.
- [29] FU Junwei,YU Jiaguo,JIANG Chuanjia,et al.G-C3N4-based heterostructured photocatalysts[J].Advanced Energy Materials,2017,8(3):1701503.
- [30] SIDDULU N T GURWINDER Singh,IN Young Kim,et al.Nanostructured carbon nitrides for CO2 capture and conversion[J].Advanced Materials,2020,32(18):1904635.
- [31] ZHANG Guigang,LI Guosheng,TOBIAS Heil,et al.Tailoring gr-ain boundary chemistry of polymeric carbon nitride for enhanced solar H2 production and CO2 reduction[J].Angewandte Chemie International Edition,2019,58(11):3433-3437.
- [32] XU Haiqun,HU Jiahua,WANG Dengke,et al.Visible-light photoreduction of CO2 in a metal-organic framework:Boosting electron-hole separation via electron trap states[J].Journal of the American Chemical Society,2015,137(42):13440-13443.
- [33] FU Yanghe,SUN Dengrong,CHEN Yongjuan,et al.An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction[J].Angewandte Chemie International Edition,2012,51(14):3364-3367.
- [34] SUN Dengrong,FU Yanghe,LIU Wenjun,et al.Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr)and its derivatives:Towards a better understanding of photocatalysis on metal-organic frameworks[J].Chemistry:A European Journal,2013,19(42):14279-14285.
- [35] 何鹏琛,周健,周阿武,等.MOFs基材料在光催化CO2还原中的应用[J],高等学校化学学报,2019,40(5):855-866.HE Pengchen,ZHOU Jian,ZHOU Awu,et al.MOFs-based materials for photocatalytic CO2 reduction[J].Chemical Journal of Chinese Universities,2019,40(5):855-866.
- [36] CHEN D,XING H,WANG C,et al.Highly efficient visible-light-driven CO2 reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes[J].Journal of Materials Chemistry A,2016,4(7):2657-2662.
- [37] 李长华,赵江婷,熊卓,等.Pt、Cu共改性TiO2选择性光催化还原CO2制CH4[J],洁净煤技术,2020,26(4):162-167.LI Changhua,ZHAO Jiangting,XIONG Zhuo,et al.Selective photocatalytic reduction of CO2 into CH4 by Pt and Cu co-modified TiO2[J].Clean Coal Technology,2020,26(4):162-167.
- [38] WANG Huanli,ZHANG Lisha,CHEN Zhigang,et al.Semiconductor heterojunction photocatalysts:Design,construction,and photocatalytic performances[J].Chemical Society Reviews,2014,43(15):5234-5244.
- [39] ZHANG Mi,LU Meng,LANG Zhongling,et al.Semiconductor/covalent-organic-framework Z-Scheme heterojunctions for artificial photosynthesis[J].Angewandte Chemie International Edition,2020,59(16):6500-6506.
- [40] FU Junwei,XU Quanlong,LOW Jingxiang,et al.Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J].Applied Catalysis B:Environmental,2019,243:556-565.
- [41] XU Quanlong,ZHANG Liuyang,CHENG Bei,et al.S-scheme heterojunction photocatalyst[J].Chem,2020,6(7):1543-1559.
- [42] XU Feiyan,MENG Kai,CHENG Bei,et al.Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J].Nature Communications,2020,11(1):1-9.
- [43] XIA P,ZHU B,YU J,et al.Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction[J].Journal of Materials Chemistry A,2017,5(7):3230-3238.
- [44] NIU Ping,YANG Yongqiang,YU Jimmy C,et al.Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst[J].Chemical Communications,2014,50(74):10837-10840.
- [45] YU Jiaguo,JIN Jian,CHENG Bei,et al.A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel[J].Journal of Materials Chemistry A,2014,2(10):3407-3416.
- [46] YE Fan,WANG Fang,MENG Chenchen,et al.Crystalline phase engineering on cocatalysts:A promising approach to enhancement on photocatalytic conversion of carbon dioxide to fuels[J].Applied Catalysis B:Environmental,2018,230:145-153.
- [47] YAGHOUBI H,LI Zhi,CHEN Yao,et al.Toward a visible light-driven photocatalyst:The effect of midgap-states-induced energy gap of undoped TiO2 nanoparticles[J].ACS Catalysis,2015,5(1):327-335.
- [48] WU Ju,LI Xiaodong,SHI Wen,et al.Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers[J].Angewandte Chemie International Edition,2018,57(28):8719-8723.
- [49] JIANG Zhifeng,WAN Weiming,LI Huaming,et al.A hierarchical Z-Scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction[J].Advanced Materials,2018,30(10):1706108.
- [50] LI Yang,LI Baihai,ZHANG Dainan,et al.Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity[J].ACS Nano,2020,14(8):10552-10561.
- [51] ZHAO Yilong,WEI Yuechang,WU Xingxing,et al.Graphene-wrapped Pt/TiO2 photocatalysts with enhanced photogenerated charges separation and reactant adsorption for high selective photoreduction of CO2 to CH4[J].Applied Catalysis B:Environmental,2018,226(15):360-372.
- [52] 施晶莹,李灿.太阳燃料:新一代绿色能源源[J].科技导报,2020,38(23):39-48.SHI Jingying,LI Can.Solar fuels:New generation of green energy[J].Science & Technology Review,2020,38(23):39-48.
- [53] 赵江婷,熊卓,赵永椿,等.热助光催化CO2还原研究进展与展望[J].洁净煤技术,2021,27(2):132-138.ZHAO Jiangting,XIONG Zhuo,ZHAO Yongchun,et al.Progress and prospect of thermal assisted photocatalytic CO2 reduction[J].Clean Coal Technology,2021,27(2):132-138.
- [54] ZHANG Baohua,JIANG Yinzhu,GAO Mingxia.Recent progress on hybrid electrocatalysts for efficient electrochemical CO2 reduction[J].Nano Energy,2021,80:105504.
- [55] DOCAO S,KOIRALA A R,KIM M G,et al.Solar photochemical-thermal water splitting at 140 ℃ with Cu-loaded TiO2[J].Energy & Environmental Science,2017,10(2):628-640.
- [56] 许辰宇.光热协同催化分解H2O和CO2制备燃料反应动力学及能量转化[D].杭州:浙江大学,2018.
- [57] WANG Weikang,XU Difa,CHENG Bei,et al.Hybrid carbon@TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity[J].Journal of Materials Chemistry A,2017,5(10):5020-5029.
- [58] OZIN G,XIA M,DUCHESNE P N,et al.Principles of photothermal gas-phase heterogeneous CO2catalysis [J].Energy & Environmental Science,2019,12(4):1122-1142.
- [59] TU Wenguang,ZHOU Yong,LIU Qi,et al.An in situ simultane-ous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets:Graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane[J].Advanced Functional Materials,2013,23(14):1743-1749.
- [60] 郑凯,张启彦,王路瑶,等.石墨烯基光催化复合材料研究进展[J].工业催化,2019,27(8):36-41.ZHENG Kai,ZHANG Qiyan,WANG Luyao,et al.Advances in graphene-based photocatalytic composites[J].Industry Catalysis,2019,27(8):36-41.
- [61] 孙阳阳,张鸿雁,周建华,等.石墨烯纳米复合材料光热效应研究进展[J].化工新型材料,2014,42(1):30-32.SUN Yangyang,ZHANG Hongyan,ZHOU Jianhua,et al.Progress of graphene nanocomposites photothermal effect[J].New Chemical Materials,2014,42(1):30-32.
- [62] XU M,HU X,WANG S,et al.Photothermal effect promoting CO2 conversion over composite photocatalyst with high graphene content[J].Journal of Catalysis,2019,377,652-661.
- [63] WANG L,WANG Y,CHENG Y,et al.Hydrogentreated mesop-orous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH)with enhanced photothermal catalytic performance[J].Journal of Materials Chemistry A,2016,4(14):5314-5322.
- [64] FENG Kai,WANG Shenghua,ZHANG Dake,et al.Cobalt plasmonic superstructures enable almost 100% broadband photon efficient CO2 photocatalysis[J].Advanced Materials,2020,32(24):2000014.
- [65] QI Yuhang,SONG Lizhu,OUYANG Shuxin.Photoinduced defect engineering:enhanced photothermal catalytic performance of 2D black In2O3-x nanosheets with bifunctional oxygen vacancies[J].Advanced Materials,2020,32(6):1903915.
- [66] LI Yaguang,HAO Jianchao,SONG Hui.Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation[J].Nature Communications,2019,10(1):1-9.
- CO_2还原
- 光催化
- 光催化剂
- 选择性
- CO产率
- 光热还原
CO_2 reduction - photocatalysis
- photocatalyst
- selectivity
- CO yield
- photothermal reduction