丙烷MILD燃烧方式下碳烟生成特性Soot formation characteristics during propane MILD combustion
田松杰,任豪,徐顺塔,席礼阳,涂垚杰,刘豪
TIAN Songjie,REN Hao,XU Shunta,XI Liyang,TU Yaojie,LIU Hao
摘要(Abstract):
中强度低氧稀释(Moderate or Intense Low-oxygen Dilution,MILD)燃烧是一种新型低氧稀释燃烧技术,能够同时实现低NO_x和碳烟排放。基于化学动力学分析软件CHEMKIN-PRO中的对冲火焰模型,通过数值模拟研究了丙烷MILD燃烧方式下碳烟的生成路径及其与常规燃烧之间的差异,并深入探讨了拉伸率(50~80 s~(-1))和CO_2稀释(体积分数0~60%)对丙烷MILD方式下碳烟生成路径的影响。结果表明:MILD燃烧方式下碳烟生成的主要路径是2C_3H_3→A1、A1~-+H(+M)?A1(+M)、A1~-+CH_4?A1+CH_3、A1~-+C_2H_4?A1+C_2H_3、C_6H_5CH_3+H=A1+CH_3和C_4H_5~(-2)+C_2H_2=A1+H;与常规燃烧相比,MILD燃烧方式下2C_3H_3→A1和A1~-+H(+M)?A1(+M)反应速率降低,减少了A1生成进而抑制了碳烟成核,最终导致碳烟表面质量生长速率降低78.6%,最终碳烟峰值体积分数降低了83.7%;相比之下,MILD燃烧方式下2C_3H_3→A1路径对碳烟生成的贡献率降低了7.7%,而C_6H_5CH_3+H=A1+CH_3和C_4H_5~(-2)+C_2H_2=A1+H路径的贡献率重要性明显上升,分别提升5.36%和7.59%;此外,MILD燃烧方式下碳烟峰值体积分数随拉伸率的变化呈非线性特征,碳烟峰值体积分数随拉伸率的增加呈现先升高后降低的趋势,其机理源于成核速率的非单调变化与表面生长速率的持续上升之间的竞争效应。CO_2的物理和化学效应随着稀释比例的上升呈增加趋势,在稀释范围为0~40%时,CO_2的物理效应对碳烟峰值影响不大,CO_2通过CO+OH?CO_2+H反应促进H消耗从而削弱PAH生长所需的HACA机制,导致A1和A4物质的量分数显著降低,在CO_2稀释.比例为60%时碳烟峰值体积分数进一步降低至6.4×10~(-9),从而进一步减少MILD燃烧方式下碳烟的生成。
Moderate or intense low-oxygen dilution(MILD) combustion is an advanced low-oxygen diluted combustion technology capable of achieving simultaneous reductions in NOx and soot emissions. This study employs numerical simulations based on the counterflow flame model in the chemical kinetics analysis software CHEMKIN-PRO to investigate the soot formation pathways in propane MILD combustion and their distinctions from conventional combustion. Furthermore,the effects of strain rate(50–80 s~(-1)) and CO_2 dilution(volume fraction:0–60%) on soot formation pathways under MILD conditions are systematically analyzed. The results reveal that the dominant soot formation pathways in MILD combustion are: 2C_3H_3→A1, A_1~-+H(+M)?A1(+M), A_1~-+CH_4?A1+CH_3,A_1~-+C_2H_4?A1+C_2H_3, C_6H_5CH_3+H=A1+CH_3 and 2C_3H_3→A1 and A_1~-+ H(+M)? A1(+M) under MILD conditions are significantly reduced,leading to suppressed A1 formation and thus inhibiting soot nucleation. Consequently,the surface mass growth rate of soot decreases by 78.6%,and the peak soot volume fraction diminishes by 83.7%. Notably,the contribution of the 2C_3H_3→A1 pathway to soot formation decreases by 7.7% under MILD combustion,while the importance of the C_6H_5CH_3+H?A1+CH_3 and Additionally,the peak soot volume fraction under MILD conditions exhibits a nonlinear dependence on strain rate,initially increasing and subsequently decreasing with rising strain rates. This behavior stems from the competitive interplay between the non-monotonic variation in nucleation rates and the continuous increase in surface growth rates. Both the physical and chemical effects of CO_2 dilution intensify with higher dilution ratios. At CO_2 dilution levels of 0-40%,the physical effect of CO_2 exerts minimal influence on peak soot volume fraction. However,CO_2 chemically promotes H consumption via the CO+OH?CO_2+H reaction,thereby weakening the H-abstraction C_2H_2-addition(HACA) mechanism critical for polycyclic aromatic hydrocarbon(PAH) growth. This results in significant reductions in A1 and A4 concentrations. At 60% CO_2 dilution,the peak soot volume fraction further declines to 6.4×10~(-9),demonstrating enhanced suppression of soot formation in MILD combustion.
关键词(KeyWords):
MILD燃烧;常规燃烧;丙烷;碳烟;拉伸率;CO_2稀释
MILD combustion;conventional combustion;propane;soot;strain rates;CO_2 dilution
基金项目(Foundation): 国家自然科学基金面上资助项目(52376112)
作者(Author):
田松杰,任豪,徐顺塔,席礼阳,涂垚杰,刘豪
TIAN Songjie,REN Hao,XU Shunta,XI Liyang,TU Yaojie,LIU Hao
DOI: 10.13226/j.issn.1006-6772.23122801
参考文献(References):
- [1]LI S Q,ZHANG B S,TANG X.Forecasting of China’s natural gas production and its policy implications[J].Petroleum Science,2016,13(3):592-603.
- [2]金声势,刘凯杰,刘秋文,等.磷酸改性CeO2纳米棒负载Pt催化剂催化丙烷燃烧性能的研究[J].无机盐工业,2024,56(1):141-148.JIN Shengshi,LIU Kaijie,LIU Qiuwen,et al.Study on catalytic performance of phosphoric acid modified CeO2 nanorod supported Pt catalyst for propane combustion[J].Inorganic Chemicals Industry,2024,56(1):141-148.
- [3]LIGHTY J S,VERANTH J M,SAROFIM A F.Combustion aerosols:Factors governing their size and composition and implications to human health[J].Journal of the Air&Waste Management Association,2000,50(9):1565-1618.
- [4]PIACENTINI R D,MICHELETTI M I.Connections between black carbon (soot) emission and global warming[J].Drying Technology,2016,34(9):1009-1010.
- [5]李鹏飞,米建春,DALLY B B,等.MILD燃烧的最新进展和发展趋势[J].中国科学:技术科学,2011,41(2):135-149.LI Pengfei,MI Jianchun,B DALLY B,et al.The latest progress and development trend of MILD combustion[J].Scientia Sinica (Technologica),2011,41(2):135-149.
- [6]CAVALIERE A,DE JOANNON M.Mild combustion[J].Progress in Energy and Combustion Science,2004,30(4):329-366.
- [7]DE JOANNON M,SABIA P,COZZOLINO G,et al.Pyrolitic and oxidative structures in hot oxidant diluted oxidant (HODO)MILD combustion[J].Combustion Science and Technology,2012,184(7-8):1207-1218.
- [8]YE J J,MEDWELL P R,DALLY B B,et al.The transition of ethanol flames from conventional to MILD combustion[J].Combustion and Flame,2016,171:173-184.
- [9]EFFUGGI A,GELOSA D,DERUDI M,et al.Mild combustion of methane-derived fuel mixtures:Natural gas and biogas[J].Combustion Science and Technology,2008,180(3):481-493.
- [10]KRISHNAMURTHY N,PAUL P J,BLASIAK W.Studies on lowintensity oxy-fuel burner[J].Proceedings of the Combustion Institute,2009,32(2):3139-3146.
- [11]特纳斯,姚强,李水清,等.燃烧学导论:概念与应用[M].北京:清华大学出版社,2015.
- [12]WANG Y,CHUNG S H.Soot formation in laminar counterflow flames[J].Progress in Energy and Combustion Science,2019,74:152-238.
- [13]MARUTA K,MUSO K,TAKEDA K,et al.Reaction zone structure in flameless combustion[J].Proceedings of the Combustion Institute,2000,28(2):2117-2123.
- [14]PARK J,CHOI J W,KIM S G,et al.Numerical study on steamadded mild combustion[J].International Journal of Energy Research,2004,28(13):1197-1212.
- [15]SESHADRI K,WILLIAMS F A.Laminar flow between parallel plates with injection of a reactant at high Reynolds number[J].International Journal of Heat and Mass Transfer,1978,21(2):251-253.
- [16]RICHTER M,SCHULTHEIS R,DAWSON J R,et al.Extinction strain rates of premixed ammonia/hydrogen/nitrogen-air counter-flow flames[J].Proceedings of the Combustion Institute,2023,39(2):2027-2035.
- [17]QUADARELLA E,LI Z P,GUO J J,et al.Investigation of soot sensitivity to strain rate in ethylene counterflow soot formation oxidation flames[J].Proceedings of the Combustion Institute,2023,39(2):1615-1623.
- [18]RICHTER H,HOWARD J B.Formation of polycyclic aromatic hydrocarbons and their growth to soot:A review of chemical reaction pathways[J].Progress in Energy and Combustion Science,2000,26(4-6):565-608.
- [19]SáNCHEZ N E,CALLEJAS A,MILLERA A,et al.Formation of PAH and soot during acetylene pyrolysis at different gas residence times and reaction temperatures[J].Energy,2012,43(1):30-36.
- [20]D’ANNA A,SIRIGNANO M.Detailed kinetic mechanisms of PAH and soot formation[M]//Mathematical modelling of gasphase complex reaction systems:Pyrolysis and combustion.Amsterdam:Elsevier,2019:647-672.
- [21]FRENKLACH M.Reaction mechanism of soot formation in flames[J].Physical Chemistry Chemical Physics,2002,4(11):2028-2037.
- [22]APPEL J,BOCKHORN H,FRENKLACH M.Kinetic modeling of soot formation with detailed chemistry and physics:Laminar premixed flames of C2 hydrocarbons[J].Combustion and Flame,2000,121(1-2):122-136.
- [23]BOCKHROM H.Soot formation in combustion:Mechanisms and models[M].Berlin:Springer,1994.
- [24]WANG Y,RAJ A,CHUNG S H.A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames[J].Combustion and Flame,2013,160(9):1667-1676.
- [25]WANG Y,RAJ A,CHUNG S H.Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels[J].Combustion and Flame,2015,162(3):586-596.
- [26]FRENKLACH M,WANG H.Detailed modeling of soot particle nucleation and growth[J].Symposium (International) on Combustion,1991,23(1):1559-1566.
- [27]WANG H,FRENKLACH M.A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames[J].Combustion and Flame,1997,110(1-2):173-221.
- [28]JIANG P,ZHOU M X,WEN D X,et al.An experimental multiparameter investigation on the thermochemical structures of benchmark ethylene and propane counterflow diffusion flames and implications to their numerical modeling[J].Combustion and Flame,2021,234:111622.
- [29]戴卫.掺CO和O2对扩散火焰中碳烟生成的影响机理[D].武汉:武汉理工大学,2020.
- [30]徐磊.氢气及醇类燃料掺混对扩散火焰碳烟生成的影响研究[D].武汉:武汉理工大学,2020.