弱碱性吸收剂碳捕集及CO2富液生物再生性能Performance of carbon capture by a weakly alkaline absorbent and bio-regeneration of the CO2-rich solution
赵敏楠,张佳音,张新妙,徐恒,栾金义,陆丁香,赵鹏宇,陈湘泽,武振康
ZHAO Minnan,ZHANG Jiayin,ZHANG Xinmiao,XU Heng,LUAN Jinyi,LU Dingxiang,ZHAO Pengyu,CHEN Xiangze,WU Zhenkang
摘要(Abstract):
碳捕集转化一体化工艺能利用CO_2转化过程同步实现CO_2富液再生,有望降低碳捕集转化整体成本。为评价生物甲烷化与碳捕集耦合的可行性,首先,在填料塔中考察了以4.2 g/L NaHCO_3、6 g/L Na_2CO_3、微生物营养液配制的弱碱性吸收剂(pH=10)对模拟烟气中CO_2的吸收性能;其次,在厌氧瓶内利用生物甲烷化过程对CO_2富液开展5个周期的循环再生试验。结果表明,填料塔气体流量≤1.0 L/min时,随液体流量增加,所有试验组CO_2去除率逐渐上升并能稳定在80%以上,该填料塔液体流量宜≤0.9 L/min;不同气体流量(0.4~1.2 L/min)下填料塔体积总传质系数基本稳定在17~19 mol/(h·kPa·m~3);CO_2吸收导致吸收液中NaHCO_3增加、Na_2CO_3减少,二者变量比值在1.2~1.9。气体流量为0.6 L/min、液体流量为0.7 L/min时,在维持80%以上CO_2去除率的前提下,该弱碱性吸收剂可循环使用6次,此时活性组分CO_3~(2-)利用率达89.5%,形成的CO_2富液中总无机碳量为0.127 mol/L,pH为8.82,能为生物甲烷化微生物提供适宜的生长环境。CO_2富液循环生物再生试验表明,每次再生后的吸收剂CO_2吸收量基本稳定在69.6~78.6 mmol/L,且再生期间CH_4产生过程具有良好的重复性;再生试验后,Firmicutes、Actinobacteriota等耐碱性门水平细菌得到一定富集;氢营养型产甲烷菌在再生前后古菌属中占比均接近99%,但再生试验期间弱碱性环境导致Methanobrevibacter相对丰度降低了19.5%,unclassified_f_Methanobacteriaceae增加了18.7%。初步证实了碳捕集耦合生物甲烷化工艺的可行性。
It is expected that integrated carbon capture and conversion(iCCC) will reduce the overall cost of carbon capture & conversion by leveraging the CO_2 conversion process to simultaneously regenerate CO_2-rich solutions. To assess the feasibility of coupling biomethanation and carbon capture, the absorption performance of a slightly alkaline absorbent(pH=10) prepared with 4.2 g/L NaHCO_3, 6 g/L Na_2CO_3 and a microbial nutrient solution for CO_2 in simulated flue gas in a packed column was investigated. Second, the CO_2-rich solution was subjected to a five-cycle regeneration experiment using the biomethanation process in anaerobic bottles. The results show that in the flow-through mode, when the gas flow rate of packed column is ≤1.0 L/min, with the increase of liquid flow rate, CO_2 removal rates of all experimental groups gradually increase and can be stabilized above 80%, and the liquid flow rate of this packed column is suitable to be ≤ 0.9 L/min. Overall volumetric mass transfer coefficients of the packed column at different gas flow rates(0.4-1.2 L/min) are generally stable between 17-19 mol/(h·kPa·m~3). As a result of CO_2 absorption, NaHCO_3 in the absorption solution increases and Na_2CO_3 decreases, with a ratio between 1.2 and 1.9. Under the condition that the CO_2 removal rate is greater than 80%, the slightly alkaline absorbent can be recycled 6 times at a gas flow rate of 0.6 L/min and liquid flow rate of 0.7 L/min. The utilization rate of the active component CO_3~(2-) reaches 89.5%, and the total inorganic carbon(TIC) of the formed CO_2-rich solution is 0.127 mol/L at a pH of 8.82, creating an environment conducive to the growth of biomethanation microorganisms. The results of the cyclic experiments on the bio-regeneration of the CO_2-rich solution reveal that the absorbed CO_2 of the absorbent is basically stable in the range of 69.6-78.6 mmol/L after each regeneration and the CH_4 production is reproducible during the regeneration process. As a result of the regeneration experiment, alkali-resistant bacteria at the phylum level, such as Firmicutes and Actinobacteriota, are somewhat enriched. Approximately 99% of archaeal genera are dominated by hydrogenotrophic methanogens before and after regeneration, but the slightly alkaline environment during regeneration results in a 19.5% decrease in the relative abundance of Methanobrevibacter and a 18.7% increase in the relative abundance of unclassified_ f_Methanobacteriaceae, respectively. In conclusion, the above experimental results indicate the feasibility of biomethanation combined with carbon capture.
关键词(KeyWords):
碳捕集转化一体化;吸收剂;CO_2富液;生物再生;生物甲烷化
integrated carbon capture and conversion(iCCC);absorbent;CO_2-rich solution;bio-regeneration;biomethanation
基金项目(Foundation): 国家自然科学基金青年科学基金资助项目(51908547)
作者(Author):
赵敏楠,张佳音,张新妙,徐恒,栾金义,陆丁香,赵鹏宇,陈湘泽,武振康
ZHAO Minnan,ZHANG Jiayin,ZHANG Xinmiao,XU Heng,LUAN Jinyi,LU Dingxiang,ZHAO Pengyu,CHEN Xiangze,WU Zhenkang
DOI: 10.13226/j.issn.1006-6772.KD23121401
参考文献(References):
- [1] 阳平坚,彭栓,王静,等.碳捕集、利用和封存(CCUS)技术发展现状及应用展望[J/OL].中国环境科学:1-15(2023-08-16)[2024-01-09].https://doi.org/10.19674/j.cnki.issn1000-6923.20230815.001.YANG Pingjian,PENG Shuan,WANG Jing,et al.Carbon Capture,Utilization and Storage (CCUS) technology development status and application prospects[J/OL].China Environmental Science:1-15(2023-08-16)[2024-01-09].https://doi.org/10.19674/j.cnki.issn1000-6923.20230815.001.
- [2] 国家统计局.中华人民共和国2022年国民经济和社会发展统计公报[J].中国统计,2023(3):12-29.
- [3] 刘克峰,刘陶然,蔡勇,等.二氧化碳捕集技术研究和工程示范进展[J/OL].化工进展:1-15(2023-11-03)[2024-01-09].https://doi.org/10.16085/j.issn.1000-6613.2023-0730.LIU Kefeng,LIU Taoran,CAI Yong,et al.Progress in research and engineering demonstration of CO2 capture technology[J/OL].Chemical Industry and Engineering Progress:1-15(2023-11-03)[2024-01-09].https://doi.org/10.16085/j.issn.1000-6613.2023-0730.
- [4] 刘飞.胺基两相吸收剂捕集二氧化碳机理研究[D].杭州:浙江大学,2020.
- [5] 余歌.混合吸收剂的沼气CO2化学吸收—再生特性研究[D].武汉:华中农业大学,2018.
- [6] 陆诗建,贡玉萍,刘玲,等.有机胺CO2吸收技术研究现状与发展方向[J].洁净煤技术,2022,28(9):44-54.LU Shijian,GONG Yuping,LIU Ling,et al.Research status and future development direction of CO2 absorption technology for organic amine[J].Clean Coal Technology,2022,28(9):44-54.
- [7] FU Hongchen,YOU Fei,LI Hongru,et al.CO2 capture and in situ catalytic transformation[J].Frontiers in Chemistry,2019,7:525.
- [8] 纪龙,曾鸣.燃煤电厂CO2捕集与利用技术综述[J].煤炭工程,2014,46(3):90-92.JI Long,ZENG Ming.Review oncapture and utilization technology of carbon dioxide in coal-firea power plant[J].Coal Engineering,2014,46(3):90-92.
- [9] 陈云飞.CO2-钒酸盐电转化碳/钒基材料基础研究[D].北京:北京科技大学,2022.
- [10] 谢美连.新型“化学吸收-微藻转化”耦合的CO2再利用系统及优化[D].天津:天津大学,2018.
- [11] CHOI W,KIM G,LEE K.Influence of the CO2 absorbent monoethanolamine on growth and carbon fixation by the green alga Scenedesmus sp[J].Bioresource Technology,2012,120:295-299.
- [12] 邱依婷.基于废水资源化利用的“化学吸收-微藻转化”耦合CO2捕集工艺[D].天津:天津大学,2019.
- [13] 苗佳慧,王建城,代雅男,等.潮汐式嗜氢型甲烷化性能及其用于CO2富液再生可行性研究[J/OL].洁净煤技术:1-8(2023-08-17)[2024-01-09].http://kns.cnki.net/kcms/detail/11.3676.TD.20230817.0840.002.html.MIAO Jiahui,WANG Jiancheng,DAI Yanan,et al.Performance of tidal hydrogenotrophic methanation and its feasibility forregenerating CO2-loaded solutions[J/OL].Clean Coal Technology:1-8(2023-08-17)[2024-01-09].http://kns.cnki.net/kcms/detail/11.3676.TD.20230817.0840.002.html.
- [14] XU H,MIAO J,WANG J,et al.Integrated CO2 capture and co-nversion via H2-driven CO2 biomethanation:Cyclic performance and microbial community response[J].Bioresource Technology,2023,393:130055.
- [15] 侯海龙,王秀林,侯建国,等.甲烷作为储氢介质产业模式下的关键技术分析[J].现代化工,2023,43(6):12-17.HOU Hailong,WANG Xiulin,HOU Jianguo,et al.Analysis on key technologies under industry mode with methane as hydrogen storage medium[J].Modern Chemical Industry,2023,43(6):12-17.
- [16] IRINI ANGELIDAKI,WENDY SANDERS.Assessment of the anaerobic biodegradability of macropollutants[J].Reviews in Environmntal Science and Biotechnology,2004,3(2):117-129.
- [17] MORITA M,MALVANKAR N S,FRANKS A E,et al.Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates[J].mBio,2011,2(4):10.1128.
- [18] 徐恒,汪翠萍,颜锟,等.颗粒型厌氧生物膜改善高氢分压下丙酸降解抑制研究[J].中国环境科学,2016,36(5):1435-1441.XU Heng,WANG Cuiping,YAN Kun,et al.Granule-based anaerobic biofilm enhances propionic acid degradation under high H2 partial pressure[J].China Environmental Science,2016,36(5):1435-1441.
- [19] 罗洋,盛宇星,曹宏斌.填料塔中Na2CO3吸收高浓度H2S的传质特性[J].环境工程学报,2014,8(4):1561-1566.LUO Yang,SHENG Yuxing,CAO Hongbin.Mass transfer characteristics of absorption of high concentration of H2S by sodiumcarbonate in packed column[J].Chinese Journal of Environmental Engineering,2014,8(4):1561-1566.
- [20] DA ROSA G M,MORAES L,CARDIAS B B,et al.Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle[J].Bioresource Technology,2015,192:321-327.
- [21] SUN Z,ZHANG D,YAN C,et al.Promotion of microalgal biomass production and efficient use of CO2 from flue gas by monoethanolamine[J].Journal of Chemical Technology & Biotechnology,2015,90(4):730-738.
- [22] 林冠屹,朱春英,付涛涛,等.微通道内MEA/MDEA混合溶液吸收CO2的传质特性[J].化工学报,2018,69(11):4675-4682.LIN Guanyi,ZHU Chunying,FU Yaotao,et al.Mass transfer performance of CO2 absorption into aqueous mixture of monoethanolamine with N-methyldiethanolamine in microchannel[J].CIESC Journal,2018,69(11):4675-4682.
- [23] 王乐萌.新型复配醇胺溶液捕集CO2过程的吸收特性研究[D].北京:华北电力大学,2018.
- [24] 唐忠利,赵行健,刘伯潭,等.规整填料塔中氨水吸收CO2的体积总传质系数[J].化工学报,2012,63(4):1102-1107.TANG Zhongli,ZHAO Xingjian,LIU Botan,et al.Volumetric overall mass transfer coefficients of CO2 absorption into aqua ammoniain structured packed column[J].CIESC Journal,2012,63(4):1102-1107.
- [25] 唐建峰,桑伟,毕逢东,等.多因素对散堆填料吸收塔内有效传质面积的影响[J].石油学报(石油加工),2022,38(5):1148-1154.TANG Jianfeng,SANG Wei,BI Fengdong,et al.Different factors affecting effective mass transfer area of random packing absorption tower[J].Acta Petrolei Sinica(Petroleum Processing Section),2022,38(5):1148-1154.
- [26] GONZáLEZ-LóPEZ C V,ACIéN FERNáNDEZ F G,FERNá-NDEZ-SEVILLA J M,et al.Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms[J].Biotechnology and Bioengineering,2012,109(7):1637-1650.
- [27] ZHANG Q,WU Y,LUO J,et al.Enhanced volatile fatty acids production from waste activated sludge with synchronous phosphorus fixation and pathogens inactivation by calcium hypochlorite stimulation[J].Science of the Total Environment,2020,712:136500.
- [28] 李鹏飞.农业秸秆与市政污泥共混厌氧消化的协同作用及强化机制[D].南京:东南大学,2021.
- [29] RIVIERE D,DESVIGNES V,PELLETIER E,et al.Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge[J].The ISME Journal,2009,3(6):700-714.
- [30] JANG H M,KIM J H,HA J H,et al.Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater[J].Bioresource Technology,2014,165:174-182.
- [31] WARD L M,BERTRAN E,JOHNSTON D T.Draft genome sequence of Desulfovibrio sulfodismutans ThAc01,a heterotrophic sulfur-disproportionating member of the Desulfobacterota[J].Microbiology Resource Announcements,2020,9(13):e00202-20.
- [32] CHUENCHART W,LOGAN M,LEELAYOUTHAYOTIN C,et al.Enhancement of food waste thermophilic anaerobic digestion through synergistic effect with chicken manure [J].Biomass Bioenergy,2020,136:105541.
- [33] 王艳发.祁连山水合物钻探区冻土甲烷代谢特征及功能微生物研究[D].北京:中国地质大学(北京),2020.
- [34] LI C,HAO L,LYU F,et al.Syntrophic acetate-oxidizing microbial consortia enriched from full-scale mesophilic food waste anaerobic digesters showing high biodiversity and functional redundancy[J].Msystems,2022,7(5):e00339-22.
- [35] JIANG H,HAO W,LI Y,et al.Biological methanation of H2 and CO2 in a continuous stirred tank reactor[J].Journal of Cleaner Production,2022,370:133518.
- [36] WANG Z,WANG S,HU Y,et al.Distinguishing responses of acetoclastic and hydrogenotrophic methanogens to ammonia stress in mesophilic mixed cultures[J].Water Research,2022,224:119029.
- 碳捕集转化一体化
- 吸收剂
- CO_2富液
- 生物再生
- 生物甲烷化
integrated carbon capture and conversion(iCCC) - absorbent
- CO_2-rich solution
- bio-regeneration
- biomethanation
- 赵敏楠
- 张佳音
- 张新妙
- 徐恒
- 栾金义
- 陆丁香
- 赵鹏宇
- 陈湘泽
- 武振康
ZHAO Minnan - ZHANG Jiayin
- ZHANG Xinmiao
- XU Heng
- LUAN Jinyi
- LU Dingxiang
- ZHAO Pengyu
- CHEN Xiangze
- WU Zhenkang
- 赵敏楠
- 张佳音
- 张新妙
- 徐恒
- 栾金义
- 陆丁香
- 赵鹏宇
- 陈湘泽
- 武振康
ZHAO Minnan - ZHANG Jiayin
- ZHANG Xinmiao
- XU Heng
- LUAN Jinyi
- LU Dingxiang
- ZHAO Pengyu
- CHEN Xiangze
- WU Zhenkang