动调轴流风机智能监控和节能运行的实现Implementation of intelligent monitoring and energy-saving operation of axial induced draft fan
龚程,种西虎,邢岳,彭鹏,周倜
GONG Cheng,CHONG Xihu,XING Yue,PENG Peng,ZHOU Ti
摘要(Abstract):
动调轴流风机作为燃煤机组的重要辅机之一,超低排改造后,由于烟气侧系统阻力增加,引风机失速等故障率较高,在实际燃煤电站运行生产中,生产人员无法直观判断引风机运行工况点在性能曲线图中的位置,不能直观掌握风机工作状态,失速现象的产生不能提前预警。同时,3大风机厂用电率较高,缺乏有效的节能手段。因此,实现引风机的智能监控和不同工况下送引、风机的节能运行具有重要意义。实验证明,通过建立智能监控模型,为技术人员提供实时可视化监控画面,实现引风机进行实时监控和失速预警,保障机组安全运行;通过建立送、引风机节能运行模型,为技术人员提供最优氧量调节区间,能够降低风机的厂用电率,提升机组运行的经济性。
As one of the important auxiliary machines of coal-fired power units, the dynamic axial flow fan has a high failure rate due to the increased resistance of the flue gas side system and the stall of the induced draft fan after ultra-low emission transformation, the production personnel cannot intuitively judge the position of the induced draft fan operating conditions in the performance curve, cannot intuitively grasp the working state of the fan, and the stall phenomenon cannot be warned in advance. At the same time, the three major fan plants have a high electricity consumption rate. Therefore, it is of great significance to realize the intelligent monitoring of induced draft fans and the energy-saving operation of feeding and directing fans under different working conditions. Experiments show that by establishing an operation monitoring model, the induced draft fan can be monitored in real time and stalled early warning, providing real-time pictures for operators to ensure the safe operation of the unit. By establishing an energy-saving operation model of the supply fan and induced draft fan, the optimal oxygen adjustment interval is provided for the operator, which can reduce the factory power consumption rate of the fan and improve the economy of the unit operation.
关键词(KeyWords):
调轴流风机;风机失速;智能监控;节能运行
Dynamically-regulated axial draft fan;Unit load;Intelligent monitoring;Energy-efficient operation
基金项目(Foundation):
作者(Author):
龚程,种西虎,邢岳,彭鹏,周倜
GONG Cheng,CHONG Xihu,XING Yue,PENG Peng,ZHOU Ti
DOI: 10.13226/j.issn.1006-6772.23072702
参考文献(References):
- [1] 耿建渝.1000MW超超临界机组引风机优化配置[J].电站系统工程,2011,27(2):27-29.
- [2] 闫桂林.600MW超临界机组联合引风机选型分析[J].华电技术,2010,32(8):15-17.
- [3] 蒋建林,成伟倪,金春,王艺伟.基于节能监测的风机流量测量方法研究[J].工业计量.2023,33(01)
- [4] Energy-Saving Performance of Flap-Adjustment-Based Centri-fugal Fan.Genglin Chen;;Wei Xu;;Jinyun Zhao;;Haipeng Zhang.Energies,2018
- [5] 李大江.国内主要行业风机能耗现状以及节能措施的分析研究[J].风机技术,2019,61(S1):1-6.
- [6] 林俐,邹兰青,周鹏,等.规模风电并网条件下火电机组深度调峰的多角度经济性分析[J].电力系统自动化,2017,41(7):21-27.
- [7] 王贺岑,邹文华,马淮军,等.风机变频改造节能技术在火电厂的应用研究[J].中国电力,2002,35(2):70-74.
- [8] 张广才,周科,鲁芬,等.燃煤机组深度调峰技术探讨[J].热力发电,2017,46(9):17-23.
- [9] 李春宏.轴流风机失速与喘振分析及其处理[J].热力发电,2008,37(3):76-78.
- [10] 张磊,王松岭,胡晨星.叶轮机械旋转失速研究进展[J].热力发电,2014,43(1):1-5,25.
- [11] 种西虎,李广伟,靳军.1000MW机组超低排放改造后引风机失速原因分析及预防措施[J].华电技术,2019,41(3):67-70.
- [12] 杨威,琚敏,陈勤根,等.深度调峰下电站锅炉动调轴流引风机节能改造技术研究[J].风机技术,2021,63(3):94-100.
- [13] 李昊燃,郑金,董康田,等.动调轴流风机全工况智能化节能运行研究[J].热力发电,2020,49(11):34-39.
- [14] 李凯伦,高国栋,丹慧杰,等.动调轴流风机叶顶间隙对风机性能及失速特性的影响研究[J].流体机械,2018,46(10):11-14.
- [15] W.G.Warren,Correlation or regression:bias or precision.Applied Statistic 20(1971):148-164
- [16] Dallal G E.Correlation coefficient[J].Encyclopedia of Clinical Neuropsychology,2003,1184:710-713.
- [17] VAN LOCO J,ELSKENS M,CROUX C,et al.Linearity of calibration curves:use and misuse of the correlation coefficient[J].Accreditation and Quality Assurance,2002,7(7):281-285.
- [18] MACTAGGART D,FARWELL S O.Analytical use of linear regression.part I:regression procedures for calibration and quantitation[J].Journal of AOAC International,1992,75:594-608.
- [19] SU Y,CHEN X J,WANG X,et al.Real-time modular dynamic modeling for compression system of altitude ground test facilities[J].Chinese Journal of Aeronautics,2023,36(5):202-211.
- [20] ZHUM Y,WANG X,PEI X T,et al.Modified robust optimal adaptive control for flight environment simulation system with heat transfer uncertainty[J].Chinese Journal of Aeronautics,2021,34(2):420-431.